Assessment Practices Of Students With Learning Disabilities In Lebanese Private Schools: A National Survey

Rasha Elhage
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations
Part of the Educational Assessment, Evaluation, and Research Commons, and the Special Education and Teaching Commons

Recommended Citation

Elhage, Rasha, "Assessment Practices Of Students With Learning Disabilities In Lebanese Private Schools: A National Survey" (2014).
Wayne State University Dissertations. Paper 1068.
by

RASHA ELSAHELI ELHAGE
 DISSERTATION

Submitted to the Graduate School of Wayne State University, Detroit, Michigan
in partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY

2014

MAJOR: EDUCATIONAL EVALUATION
AND RESEARCH
Approved by:
\qquad
\qquad
©COPYRIGHT BY

RASHA ELSAHELI ELHAGE

2014
All Rights Reserved

DEDICATION

To my amazing mom who showed me the path to hard work and perseverance

To my giving dad who traveled thousands of miles to support me

To my loving husband whose words of encouragement kept me going

To my shining stars Marc and Serena ...

ACKNOWLEDGMENTS

I would like to extend heartfelt gratitude to several people. First and Foremost, I would like to thank my husband, Tarek, for his firm belief in my abilities. He always thought that I could achieve anything I put my mind into. I would also like to express my gratitude to my children, Marc and Serena, who attended few classes with me when I couldn't find a babysitter, and for being patient with their frequently preoccupied mom during my graduate schools years. I would like to thank my mom and dad, for their prayers, help and support. The completion of this degree is a reflection of the fundamental teachings you have drilled over the years: devotion, dedication and diligence. It is such a privilege being your daughter.

I would like to thank my major advisor, Dr. Shlomo Sawilowsky, who, despite the distances, spurred me forward and enlightened me to the many intricacies associated with this venture. I would also like to thank my other committee members, Dr. Barry Markman, Dr. Mark Larson and Dr. Anies Alhroub for their valuable comments and input.

Finally, I would like to thank all the Lebanese teachers and administrators who made this research possible, and my work colleagues, Diana and Rola, for the memorable laughs and silly stories we shared together.

This degree serves as the tangible and culminating product associated with the impact each one of you has had on me over the last five years.

Thank you for being my champions.

TABLE OF CONTENTS

Dedication -ii
Acknowledgments iii
List of Tables xiv
List of Figures xxv
CHAPTER I. INTRODUCTION 1
A. Background of the Study 1
B. Lebanon 4
C. Special Education in Lebanon 5
D. Purpose of the Study 10
E. Limitations 11
F. Operational Definitions 11
CHAPTER II. LITERATURE REVIEW 14
A. The Arab and Muslim world 14
B. Current Situation of Education in the Arab World 14
C. Traditional Assessment in the West 17
D. Assessment for learning 20
E. Assessment for Learning and Students with Learning Disabilities 24
F. Ethics in Classroom Assessment Practices 27
G. Evaluation Practices: Some Background 29

1. Evaluation Practices in the Arab Countries 30
2. Current Evaluation Practices in Developed Countries:
Empowering Stakeholders and Decision Making 31
H. CIPP 32
CHAPTER III. METHODOLOGY 37
A. Design of the study 37
B. CIPP Research Questions 37
C. Target Population and Sample 38
D. Data 40
3. Data Collection Instruments 40
a. Teacher's Survey 40
b. Administrator's Survey 42
4. Data Analysis 43
E. Power Analysis 43
CHAPTER IV. RESULTS 45
A. Instrument Reliability 45
5. Teacher's Survey 45
a. Scale: Teacher's Survey - Traditional and Alternative
Assessments, AFL 45
b.Scale: Teacher's Survey - Ethical Assessment Practices 49
c. Scale: Teacher's Survey - Preparation and Training 50
d.Scale: Teacher's Survey - Involvement in Student Assessment 51
e. Scale: Teacher’s Survey - Impact 52
f. Spearman - Brown 53
6. Administrator's Survey 54a.Scale: Administrator's Survey - Content, Methods, Mission,
Policies, and Attitudes 54
b.Scale: Administrator's Survey - Ethical Assessment Practices 56
c.Scale: Administrator's Survey - Preparation and Training 57
d.Scale: Administrator's Survey - Involvement in Student
Assessment 59
e.Scale: Administrator's Survey - Impact 60
f. Spearman - Brown 61
B. Frequencies 62
7. Participants' Gender 62
8. Participants' Age 63
9. Participants by District 63
10. Participants' Educational Level 64
11. Teachers' Teaching Level 65
12. Teachers' Assignment 66
13. Administrators' Positions 66
14. Years of Teaching 67
15. Administrative Experience 67
C. Descriptive Statistics from Teacher's Survey 67
16. Teacher's Survey - Traditional and Alternative Assessments, Assessment for Learning 67
17. Teacher's Survey - Ethical Assessment Practices 85
18. Teacher's Survey - Preparation and Training 87
19. Teacher's Survey - Involvement in Student Assessment 88
20. Teacher's Survey - Impact 90
21. Teacher's Survey - Assessment of Students with Learning Disabilities 92
22. Teacher's Survey - Accommodations 94
D. Descriptive Statistics from Administrator's Survey 100
23. Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes 100
24. Administrator's Survey - Ethical Assessment Practices 111
25. Administrator's Survey - Preparation and Training 113
26. Administrator's Survey - Involvement in Student Assessment 114
27. Administrator's Survey - Impact 116
28. Administrator's Survey - Assessment of Students with Learning
Disabilities 117
29. Administrator's Survey - Accommodations 120
E. Teachers Comparisons 125
30. Teachers According to their Teaching Assignment 125
a.Traditional and Alternative Assessments 125
b.Assessment for Learning 126
c.Ethical Assessment Practices 127
d.Preparation and Training 127
e.Involvement in Student Assessment 128
f. Impact 129
g.Assessment of Students with Learning Disabilities 129
31. Teachers According to their Educational Level 130
a.Traditional and Alternative Assessments 130
b.Assessment for Learning 131
c.Ethical Assessment Practices 132
d.Preparation and Training 133
e.Involvement in Student Assessment 134
f. Impact 135
g.Assessment of Students with Learning Disabilities 136
32. Teachers According to the District 137
a.Traditional and Alternative Assessments 137
b.Assessment for Learning 138
c.Ethical Assessment Practices 139
d.Preparation and Training 140
e.Involvement in Student Assessment 141
f. Impact 142
g.Assessment of Students with Learning Disabilities 143
33. Teachers According to their Teaching Level 144
a.Traditional and Alternative Assessments 144
b.Assessment for Learning 145
c.Ethical Assessment Practices 146
d.Preparation and Training 147
e.Involvement in Student Assessment 148
f. Impact 149
g.Assessment of Students with Learning Disabilities 150
F. Administrators Comparisons 151
34. Administrators According to their Educational Level 151
a. Content, Methods, Mission, Policies and Attitudes 151
b.Ethical Assessment Practices 152
c.Preparation and Training 153
d.Involvement in Student Assessment 154
e.Impact 155
f. Assessment of Students with Learning Disabilities 156
35. Administrators According to their Position 157
a. Content, Methods, Mission, Policies and Attitudes 157
b.Ethical Assessment Practices 158
c.Preparation and Training 159
d.Involvement in Student Assessment 160
e.Impact 161
f. Assessment of Students with Learning Disabilities 162
36. Administrators According to the District 163
a.Content, Methods, Mission, Policies and Attitudes 163
b.Ethical Assessment Practices 164
c.Preparation and Training 165
d.Involvement in Student Assessment 166
e.Impact 167
f. Assessment of Students with Learning Disabilities 168
G. Teachers and Administrators Comparisons 169
37. Teachers and Administrators According to the District 169
a.Ethical Assessment Practices 169
b.Preparation and Training 170
c.Involvement in Student Assessment 171
d.Impact 172
e.Assessment of Students with Learning Disabilities 174
38. Teachers and Administrators According to their Educational Level 175
a.Ethical Assessment Practices 175
b.Preparation and Training 176
c.Involvement in Student Assessment 177
d.Impact 179
e. Assessment of Students with Learning Disabilities 180
39. Teachers and Administrators According to their Gender 181
a.Ethical Assessment Practices 181
b.Preparation and Training 182
c.Involvement in Student Assessment 183
d.Impact 184
e.Assessment of Students with Learning Disabilities 185
CHAPTER V. CONCLUSIONS 187
A. Discussion 187
B. Instrument Reliability 187
40. Teacher's Survey 187
41. Administrator's Survey 187
C. Answering the CIPP Research Questions 188
42. Process Evaluation - In what kind of educational setting do assessmentpractices take place?188
a.Participants' Gender 188
b.Participants' Age 189
c.Participants by Districts 189
d.Participants' Educational Level 190
e. Teachers’ Teaching Level 191
f. Years of Teaching Experience and Years of Administrative
Experience 191
g.Content, Methods, Mission, Policies and Attitudes 192
h. Ethical Assessment Practices 193
43. Input Evaluation - How prepared and involved are teachers and administrators in student assessment? 194
a.Preparation and Training 195
b.Involvement in Student Assessment 196
44. Process Evaluation - How are assessments applied in the classroom? 197
a.Teachers' Traditional and Alternative Assessment Practices 197
b.Assessment for Learning 199
c. Assessment of Students with Learning Disabilities 199
45. Product Evaluation - What impact do assessment practices have? 202
D. Summary 204
E. Recommendations 206
Appendix A: Teacher's Assessment Practices Survey 207
Appendix B: Administrator's Assessment Practices Survey 217
Appendix C: Permission to use the TAFL-Q 225
Appendix D: Permission to use the Ohio Teacher Assessment Practices Survey 227
References 229
Abstract 250
Autobiographical Statement 252

LIST OF TABLES

Table 1: Item Statistics for Teacher's Survey-Traditional and Alternative Assessments, AFL - 45

Table 2: Item-Total Statistics for Teacher's Survey - Traditional and Alternative Assessments, AFL 47
Table 3: Item Statistics for Teacher's Survey - Ethical Assessment Practices 49
Table 4: Item-Total Statistics for Teacher's Survey - Ethical Assessment Practices 50
Table 5: Item Statistics for Teacher's Survey - Preparation and Training 50
Table 6: Item-Total Statistics for Teacher's Survey - Preparation and Training 51
Table 7: Item Statistics for Teacher's Survey - Involvement in Student Assessment 51
Table 8: Item-Total Statistics for Teacher's Survey - Involvement in Student Assessment 52
Table 9: Item Statistics for Teacher's Survey - Impact 53
Table 10: Item-Total Statistics Teacher's Survey - Impact 53
Table 11: Spearman-Brown for Teacher's Survey Subscales 54
Table 12: Item Statistics for Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes 54
Table 13: Item-Total Statistics for Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes 55
Table 14: Item Statistics for Administrator's Survey - Ethical Assessment Practices 57
Table 15: Item-Total Statistics for Administrator's Survey - Ethical Assessment Practices 57
Table 16: Item Statistics for Administrator's Survey - Preparation and Training 58
Table 17: Item-Total Statistics for Administrator's Survey - Preparation and Training 58
Table 18: Item Statistics for Administrator's Survey - Involvement in Student Assessment 59
Table 19: Item-Total Statistics for Administrator's Survey - Involvement in Student Assessment 60
Table 20: Item Statistics for Administrator's Survey - Impact 60
Table 21: Item-Total Statistics for Administrator's Survey - Impact 61
Table 22: Spearman-Brown for Administrator's Survey Subscales 61
Table 23: Age for Teachers and Administrators 63
Table 24: Years of Teaching Experience 67
Table 25: Years of Administrative Experience 67
Table 26: Descriptive Statistics for Teacher's Survey - Traditional and Alternative Assessments, AFL 67
Table 27: Paper pencil 68
Table 28: Create own 69
Table 29: Tests provided by curriculum 69
Table 30: True/false 69
Table 31: Multiple choice 70
Table 32: Fill in the blank 70
Table 33: Short answer 70
Table 34: Essay 71
Table 35: Means \& SD 71
Table 36: Reliability Traditional Assessment 71
Table 37: Item analyses 72
Table 38: Paper pencil importance 72
Table 39: Create own importance 72
Table 40: Tests provided by curriculum importance 73
Table 41: True/false importance 73
Table 42: Multiple choice importance 73
Table 43: Completion importance 74
Table 44: Short answer importance 74
Table 45: Essay importance 74
Table 46: Means \& SD importance 75
Table 47: Reliability Traditional Assessment importance 75
Table 48: Item analyses importance 75
Table 49: Alternative Assessment 76
Table 50: Create Performance and Portfolio 76
Table 51: Performance and Portfolio by curriculum 76
Table 52: Informal Observations and Questions 77
Table 53: Portfolios 77
Table 54: Exhibitions/Presentations/Recitals 77
Table 55: Performance Assessment 78
Table 56: Reliability Alternative Assessment 78
Table 57: Alternative Assessment importance 78
Table 58: Create Performance and Portfolio importance 79
Table 59: Performance and Portfolio by curriculum importance 79
Table 60: Informal Observations \& Questions importance 79
Table 61: Portfolios importance 80
Table 62: Exhibitions/Presentations/Recitals importance 80
Table 63: Performance Assessment importance 80
Table 64: Reliability Alternative Assessment importance 81
Table 65: AFL Monitoring1 81
Table 66: AFL Monitoring2 81
Table 67: AFL Monitoring3 82
Table 68: AFL Monitoring4 82
Table 69: AFL Monitoring5 82
Table 70: AFL Monitoring6 83
Table 71: AFL Scaffolding1 83
Table 72: AFL Scaffolding2 83
Table 73: AFL Scaffolding3 84
Table 74: AFL Scaffolding4 84
Table 75: AFL Scaffolding5 84
Table 76: AFL Scaffolding6 85
Table 77: Descriptive Statistics for Teacher's Survey - Ethical Assessment Practices 85
Table 78: Teachers' Ethical Practices1 85
Table 79: Teachers' Ethical Practices2 86
Table 80: Teachers' Ethical Practices3 86
Table 81: Teachers' Ethical Practices4 86
Table 82: Teachers' Ethical Practices5 86
Table 83: Teachers' Ethical Practices6 87
Table 84: Descriptive Statistics for Teacher's Survey - Preparation \& Training 87
Table 85: Teachers' Preparation \& Training1 87
Table 86: Teachers' Preparation \& Training2 88
Table 87: Teachers' Preparation \& Training3 88
Table 88: Descriptive Statistics for Teacher's Survey - Involvement in Student Assessment 88
Table 89: Teachers' Involvement 1 89
Table 90: Teachers' Involvement2 89
Table 91: Teachers' Involvement3 89
Table 92: Teachers' Involvement4 90
Table 93: Descriptive Statistics for Teacher's Survey - Impact 90
Table 94: Teachers' Impact1 90
Table 95: Teachers' Impact2 91
Table 96: Teachers' Impact3 91
Table 97: Teachers' Impact4 91
Table 98: Teachers' Impact5 92
Table 99: Teacher's Survey - Assessment of Students with LD with peers 92
Table 100: Descriptive Statistics for Pull out by Subjects- Teachers 92
Table 101: Language Arts- Teachers 93
Table 102: Arabic- Teachers 93
Table 103: Math- Teachers 93
Table 104: Science- Teachers 94
Table 105: Social studies- Teachers 94
Table 106: Oral instructions- Teachers 94
Table 107: Computer responses- Teachers 95
Table 108: Small Group- Teachers 95
Table 109: Alternate Site- Teachers 95
Table 110: Test Preparation- Teachers 95
Table 111: Large Print- Teachers 96
Table 112: Verbal Responses- Teachers 96
Table 113: Assistive Devices- Teachers 96
Table 114: Seating- Teachers 96
Table 115: Breaks- Teachers 97
Table 116: Reduce per Page/Line- Teachers 97
Table 117: Scribe- Teachers 97
Table 118: Calculator- Teachers 97
Table 119: Lighting- Teachers 98
Table 120: Multiple Sessions- Teachers 98
Table 121: Prompts- Teachers 98
Table 122: Reader- Teachers 98
Table 123: Tape Recorder- Teachers 99
Table 124: Extended Time- Teachers 99
Table 125: Distractions- Teachers 99
Table 126: Different Order- Teachers 99
Table 127: Descriptive Statistics for Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes 100
Table 128: Content Basic Skills - Administrators 101
Table 129: Content Cognitive Development- Administrators 101
Table 130: Content Affective Development- Administrators 101
Table 131: Content Social Development- Administrators 102
Table 132: Content Vocational - Administrators 102
Table 133: Content Student Satisfaction- Administrators 102
Table 134: Methods School Developed- Administrators 103
Table 135: Methods Commercial- Administrators 103
Table 136: Methods Student Performance- Administrators 103
Table 137: Mission Assessment- Administrators 104
Table 138: Mission Outcomes- Administrators 104
Table 139: Mission Interdisciplinary- Administrators 104
Table 140: Mission Alternative Delivery- Administrators 105
Table 141: Mission Innovation- Administrators 105
Table 142: Policies Dissemination- Administrators 105
Table 143: Policies Feedback- Administrators 106
Table 144: Policies Workshops- Administrators 106
Table 145: Policies Support- Administrators 106
Table 146: Policies Hiring- Administrators 107
Table 147: Policies Planning- Administrators 107
Table 148: Policies Review- Administrators 107
Table 149: Policies Evaluation- Administrators 108
Table 150: Attitudes1- Administrators 108
Table 151: Attitudes2- Administrators 108
Table 152: Attitudes3- Administrators 109
Table 153: Attitudes4- Administrators 109
Table 154: Attitudes5- Administrators 109
Table 155: Attitudes6- Administrators 110
Table 156: Attitudes7- Administrators 110
Table 157: Attitudes8- Administrators 110
Table 158: Attitudes9- Administrators 111
Table 159: Attitudes10- Administrators 111
Table 160: Descriptive Statistics for Administrator's Survey-Ethical Assessment Practices -- 111
Table 161: Ethical Practices1- Administrators 112
Table 162: Ethical Practices2- Administrators 112
Table 163: Ethical Practices3- Administrators 112
Table 164: Ethical Practices4- Administrators 112
Table 165: Ethical Practices5- Administrators 113
Table 166: Ethical Practices6- Administrators 113
Table 167: Descriptive Statistics for Administrator's Survey - Preparation and Training 113
Table 168: Preparation \& Training2- Administrators 113
Table 169: Preparation \& Training3- Administrators 114
Table 170: Descriptive Statistics for Administrator's Survey - Involvement in Student Assessment 114
Table 171: Involvement1- Administrators 114
Table 172: Involvement2- Administrators 115
Table 173: Involvement3- Administrators 115
Table 174: Involvement4- Administrators 115
Table 175: Descriptive Statistics for Administrator's Survey - Impact 116
Table 176: Impact2- Administrators 116
Table 177: Impact3- Administrators 116
Table 178: Impact4- Administrators 117
Table 179: Impact5- Administrators 117
Table 180: Administrator's Survey - Assessment of Students with LD with peers 117
Table 181: Descriptive Statistics for Pull out by Subjects- Administrators 118
Table 182: Language Arts- Administrators 118
Table 183: Arabic- Administrators 118
Table 184: Math- Administrators 119
Table 185: Science- Administrators 119
Table 186: Social Studies- Administrators 119
Table 187: Oral instructions- Administrators 120
Table 188: Computer Responses- Administrators 120
Table 189: Small Group- Administrators 120
Table 190: Alternate Site- Administrators 120
Table 191: Test Preparation- Administrators 121
Table 192: Large Print- Administrators 121
Table 193: Verbal Response- Administrators 121
Table 194: Assistive Devices- Administrators 121
Table 195: Seating- Administrators 122
Table 196: Breaks- Administrators 122
Table 197: Reduce per Page/Line- Administrators 122
Table 198: Scribe- Administrators 122
Table 199: Calculator- Administrators 123
Table 200: Lighting- Administrators 123
Table 201: Multiple Sessions- Administrators 123
Table 202: Prompts- Administrators 123
Table 203: Reader- Administrators 124
Table 204: Tape Recorder- Administrators 124
Table 205: Extended Time- Administrators 124
Table 206: Distractions- Administrators 124
Table 207: Different Order- Administrators 125
Table 208: Group Statistics for Traditional and Alternative Assessment Practices by Teaching Assignment 126
Table 209: Group Statistics for Assessment for Learning (AFL) by Teaching Assignment 127
Table 210: Group Statistics for Teachers' Ethical Assessment Practices by Teaching Assignment 127
Table 211: Group Statistics for Teachers' Preparation and Training by Teaching Assignment 128
Table 212: Group Statistics for Teachers' Involvement in Student Assessment by Teaching Assignment 129
Table 213: Group Statistics for Teachers' Impact by Teaching Assignment 129
Table 214: Group Statistics for Teachers' Assessment of Students with Learning Disabilities by Teaching Assignment 130
Table 215: Descriptives for Traditional and Alternative Assessment Practices by Educational Level 131
Table 216: Descriptives for Assessment for Learning (AFL) by Educational Level 132
Table 217: Descriptives for Teachers' Ethical Assessment Practices by Educational Level - 133
Table 218: Descriptives for Teachers' Preparation and Training by Educational Level 134
Table 219: Descriptives for Teachers' Involvement in Student Assessment by Educational Level 135
Table 220: Descriptives for Teachers' Impact by Educational Level 136
Table 221: Descriptives for Teachers' Assessment of Students with Learning Disabilities by Educational Level 137
Table 222: Descriptives for Teachers' Traditional and Alternative Assessment Practices by District 138
Table 223: Descriptives for Teachers' Assessment for Learning (AFL) by District 139
Table 224: Descriptives for Teachers' Ethical Assessment Practices by District 140
Table 225: Descriptives for Teachers' Preparation and Training by District 141
Table 226: Descriptives for Teachers' Involvement in Student Assessment by District 142
Table 227: Descriptives for Teachers' Impact by District 143
Table 228: Descriptives for Teachers' Assessment of LD by District 144
Table 229: Descriptives for Teachers' Traditional and Alternative Assessment Practices by Teaching Level 145
Table 230: Descriptives for Teachers’ Assessment for Learning (AFL) by Teaching Level --- 146
Table 231: Descriptives for Teachers’ Ethical Assessment Practices by Teaching Level 147
Table 232: Descriptives for Teachers' Preparation and Training by Teaching Level 148
Table 233: Descriptives for Teachers' Involvement in Student Assessment by Teaching Level 148
Table 234: Descriptives for Teachers' Impact by Teaching Level 150
Table 235: Descriptives for Teachers' Assessments of LD by Teaching Level 151
Table 236: Descriptives for Content, Methods, Mission, Policies and Attitudes by Educational Level 152
Table 237: Descriptives of Administrators' Ethical Assessment Practices by Educational Level 153
Table 238: Descriptives for Administrators Preparation and Training by Educational Level -- 154
Table 239: Descriptives for Administrators' Involvement in Student Assessment by Educational Level 155
Table 240: Descriptives for Administrators' Impact by Educational Level 156
Table 241: Descriptives of Administrators' Assessments of LD by Educational Level 157
Table 242: Descriptives for Content, Methods, Mission, Policies and Attitudes by Position - 158
Table 243: Descriptives for Administrators' Ethical Assessment Practices by Position 159
Table 244: Descriptives for Administrators' Preparation and Training by Position 160
Table 245: Descriptives for Administrators' Involvement in Student Assessment by Position 161
Table 246: Descriptives for Administrators' Impact by Position 162
Table 247: Descriptives for Administrators' Assessments of LD by Position 163
Table 248: Descriptives for Content, Methods, Mission, Policies and Attitudes by District 164
Table 249: Descriptives for Administrator's Ethical Assessment Practices by District 165
Table 250: Descriptives for Administrators' Preparation and Training by District 166
Table 251: Descriptives for Administrators' Involvement in Student Assessment by District 167
Table 252: Descriptives for Administrators' Impact by District 168
Table 253: Decriptives for Administrators' Assessments of LD by District 169
Table 254: Descriptive Statistics for Ethical Assessment Practices by Group and District 170
Table 255: Descriptive Statistics for Preparation and Training by Group and District 171
Table 256: Descriptive Statistics of Involvement in Student Assessment by Group and District 172
Table 257: Descriptive Statistics for Impact by Group and District 173
Table 258: Descriptive Statistics for Assessments of LD by Group and District 174
Table 259: Descriptive Statistics for Ethical Assessment Practices by Group and Educational Level 175
Table 260: Descriptive Statistics for Preparation and Training by Group and Educational Level 177
Table 261: Descriptive Statistics for Involvement in Student Assessment by Group and Educational Level 178
Table 262: Descriptive Statistics for Impact by Group and Educational Level 179
Table 263: Descriptive Statistics for Assessments of LD by Group and Educational Level 181
Table 264: Descriptive Statistics for Ethical Assessment Practices by Group and Gender 182
Table 265: Descriptive Statistics for Preparation and Training by Group and Gender 183
Table 266: Descriptive Statistics for Involvement in Student Assessment by Group and Gender 184
Table 267: Descriptive Statistics for Impact by Group and Gender 185
Table 268: Descriptive Statistics for Assessments of LD by Group and Gender 186

LIST OF FIGURES

Figure 1: Teachers by gender 62
Figure 2: Administrators by gender 62
Figure 3: Teachers by Districts 63
Figure 4: Administrators by Districts 64
Figure 5: Teachers' Educational Level 64
Figure 6: Administrators' Educational Level 65
Figure 7: Teachers’ Teaching Level 65
Figure 8: Teachers’ Assignment 66
Figure 9: Administrators' Positions 66

CHAPTER 1

INTRODUCTION

Background of the Study

From a historical perspective, Roosevelt (1930) stated the function of education wasto give children a desire to learn and to teach them how to use their minds and where to go to acquire facts when their curiosity is aroused. Dewey (1934) described the purpose of education as giving students what they need to develop in an orderly, sequential way and become member of society while King Jr. (1948) explained that the function of education was to teach students to think critically and intensively.

In 1957, the Association for Supervision and Curriculum Development (ASCD) restated the main purpose of education as a way to ensure the fullest possible development of students for the purpose of living morally, creatively and productively in a democratic society. In 1964, Ammons emphasized a new reading of the purpose of education where it shifts from producing a literate society to a learning society. Carpenter (2005) stated the purpose of education was discerned through four categories: economics, citizenship, self-realization and human relationship. Chomsky (2012) argued that the traditional interpretation that comes from the age of Enlightenment holds that education's highest goal is to inquire, create, search the riches of the past, internalize the parts that become significant to the mind, and carry that quest for further understanding and independent learning. Salvia, Ysseldyke \& Bolt (2011) stated that education is intended to provide students with the skills and competencies needed to enhance their lives.

Students present a significant range of academic skills. Hence, school personnel are confronted with the significant challenge of meeting the needs of a very diverse group (Salvia et
al., 2011). Achieving the purpose of education for this diverse group would not be fulfilled without shedding light on the importance of assessment practices that enables teachers to identify students' current level of skills, their strength and weaknesses, target instruction at student's personal level, monitor student learning and progress and plan and conduct adjustments in instruction, and evaluate the extent to which students have met instructional goals (ETS, 2003; Frey \& Schmitt, 2010).

The pedagogical influences of assessment practices funnel much of the interest in assessments (Harris \& James, 2006). Assessment based on information gathered by teachers within their classrooms is conceivably among the most powerful avenues to improve the quality of teaching and increase student performance (Black \& William, 1998; Crooks, 1988; Natriello, 1987). Guskey (2003) noted "assessments best suited to guide improvements in student learning are the ... assessments that teachers administer in their classrooms" (p.6) and teachers regularly design assessments to measure student progress (Brualdi, 1998). Gibbs (1999) argued that assessment sends unambiguous messages to students about the type of learning most valued and therefore strongly influences the approaches students take toward their studies. It signals to students the learning that is most valued and thereby directs their attention and efforts.

According to the National Research Council (2002) classroom assessments do more than just measure learning. What is assessed, how it is assessed, and how results are communicated send a clear message to students about what is worth learning, how it should be learned, and how well they are expected to perform. Thus, assessment considerably influences students' studying (Struyven et al., 2005).

When dealing with students with learning disabilities, schools have a need to expose them to the general education curriculum and help them get promoted to higher grades, which necessitates the identification and implementation of assessment practices that can considerably raise their achievement scores (Harris \& James, 2006) and assure the acquisition of the necessary skills to become independent, autonomous, informed and productive citizens. Access to the general education curriculum greatly improves their knowledge of human society as well as their understanding of the world and how it works (Scruggs et al., 2010). Nevertheless, a major educational challenge remains in the gaps that students with learning disabilities develop as they move into more challenging and abstract concepts, falling behind regular education students and getting caught in a circle of frustration and academic failure.

When students with learning disabilities meet special education eligibility requirements, it is common procedural practice to increase instructional intervention options as determined by the IEP, which is developed by teams of educational professionals (Reschly, 1988). Even though this classification results in increased instructional options, the learning disability label does little to indicate which interventions, including assessment practices, would be most effective (Skinner et al., 2002), especially that assessment drives learning, and assessment practices are in themselves teaching tools (Harris \& James, 2006).It is essential to indicate that a single assessment measure does not provide complete data for a comprehensive picture of a student's progress (Nolet \& Maclaughlin, 2005). According to Harris and James (2006) "The essence of effective assessment lies in determining the appropriate mix of assessment types, and that this mix will necessarily be different among disciplines and local contexts, requiring extensive local dialogue and reflection within academic communities" (p. 27). Riggan and Olah (2011) described assessment practices as "a mosaic of tools, routines, and practices" (p.3).

The mosaic metaphor for educational assessment practices is diverse and pluralistic, because they must be implemented across disciplines, types of institutions, and countries. At its most macro level assessment practices are highly refined in highly developed countries. In third world countries where educational practices have yet to coalesce assessment practices are also in flux. However, there are countries that are in between, such as, for example Lebanon. The question rightly arises what kind of mosaic do the Lebanese tiles form?

Lebanon

Lebanon is a small country of 10,452 square kilometers, situated in the Middle East on the Eastern shores of the Mediterranean Sea. There is a resident population of about 4.2 million inhabitants (UNDP, 2012).

After World War I, France was given a League of Nations mandate over Lebanon and its neighbor Syria, which together had previously been a single political unit in the Ottoman Empire. France divided them in 1920 into separate colonial administrations, drawing a border that separated mostly Muslim Syria from the kaleidoscope of religious communities in Lebanon. After 20 years of the French mandate regime, Lebanon's independence was proclaimed on Nov. 221943.

In the 1970s, various internal tensions inherent to the Lebanese system and multiple regional developments contributed to the breakdown of governmental authority and the outbreak of civil war in 1975 (Khalidi 1979; Salibi 1976), which ended with the Taif - agreement in 1990.Religious communities (Christian Orthodox, Catholic, Armenian, Muslim Shia and Sunni) and foreign groups (British council, French Institute, United nations) held the educational sector's responsibilities and management prior to the country's independence. Public schools
sprang up across the nation in the 1950s, and more than two-third of students were enrolled in public schools by the early 1970s. At the end of the civil war in 1990, the number dropped to one-third (Kobeissy, 1999) because of the Lebanese's government neglect to update curriculums and destroyed buildings due to its severe financial constraints. Today, the majority of Lebanese students continue to be educated in private schools, which are generally considered more favorable and providing higher educational quality than their public counterparts. The Lebanese public school has been described as being out of breath because of the lack of necessary survival and development elements (bab.com, 2009).According to the latest statistics released by the Lebanese Center for Educational Research and Development for the school year 2011-2012, the percentages of students attending private schools was as follow: 80.83% of preschool and Kindergarten students, 69.72% of elementary students, 61.31% of middle school students and 51.8% of high school students.

Special Education in Lebanon

In the 1980s, with the onset of the Lebanese War, the issue of disability began to immerse the collective consciousness and mobilized many non-governmental organizations. Care, education, and rehabilitation of children with disabilities constituted the raison d'être of a large number of specialized centers (Dirani, 1998). The civil war period compelled non-governmental organizations to develop special education services to fill a major void in the public sector (McBride et al., 1999).

Matters related to disabilities were left in their entirety to the Ministry of Social Affairs when it was central for the Ministry of Education to become the responsible party for the education of all children with disabilities and that the two ministries coordinated their offered
services (McBride et al., 1999). Furthermore, McBride et al. (1999) documented that there was no evidence of any type of leadership or vision exercised by the Lebanese Ministry of Education to achieve its aims in the special education sector, even though Lebanon is a signatory of international conventions related to children with special needs.

McBride et al. (1999) also documented a lack of policy regarding accommodations for students with disabilities in the examination process, in addition to a restrictive view of who is capable of following the National curriculum. Their report recommended "the development of appropriate assessment tools" (McBride, et al., p.4) to ensure that students with special needs are identified using valid and reliable tools.

An important year for the special education sector in Lebanon was 2000, which was when Public Law 220 (PL 220) was approved by the Lebanese Parliament. After many years of struggle and lobbying by the different disability non-governmental organizations (NGOs) and other society actors such as the Lebanese Physical Handicapped Union and the Youth Association for the blind, PL 220 created a legislative framework for individuals with disabilities and addressed the right to equal educational and learning opportunities for all people with disabilities (Wehbi, 2006). However, the law has flaws (Mansour \& Ghawi, 2007) particularly in the categorization of handicaps, because learning disability is omitted. But the Center for Educational Research and Development in Lebanon is currently trying to remedy this problem by its publication for a learning disability guide, to be distributed for free in all public and private schools.

Article 59 of PL 220 guaranteed the right to equal educational and learning opportunities for all people with disabilities. Article 60 stipulated that a disability should not restrict access to
educational institutions or settings in Lebanon. However, there is an absence of criteria defining each category of disabilities and consequently how to assess those students.

Even though PL 220 was a positive step for individuals with disabilities, more than 14 years have passed and relevant ministerial decrees needed to enforce the execution of the law have not yet been ratified (CSO, 2010; Mhanna, 2001; Semaan, 2008). The quasi-invisibility of individuals with disabilities from the official government agenda is such that there are currently no accurate figures on disability in Lebanon (Mansour, 2001). Moreover, the lack of documented information in the field of special education in Lebanon makes it very difficult to draw a clear picture about the type of practices exercised in that embryonic domain.

In a research study conducted to investigate attitudes toward inclusion of children with special needs in regular schools, ElZein (2009) was "obliged to rely on observation to describe the existing reality of special education practices in Lebanon" (p. 166). According to Wehbi (2006), the absence of reliable demographic and economic data in general, and about people with disabilities more specifically, made it complicated to understand and study assessment needs of students with learning disabilities. Mansour (2001) claimed this was due to a lack of an agreedupon definition and standard classification system of disabilities.

The Lebanese Curriculum in 1995, which remains the current standard, modified the educational hierarchy to meet with recent trends such as technology and mandated the catering for students with special needs (NCERD, 1995). Nevertheless, the section that had to do with exceptional students remains isolated and neglected (ElZein, 2009).

Few inclusive attempts have been documented since 1982, none of which addressed assessment practices of children with special needs, let alone children with learning disabilities.

The Arab Resource Collective (2007) reported that "findings from the 2006 National Inclusion Project indicate that the majority of children with disabilities are in special care institutions, and private schools have a policy of automatically eliminating students with disabilities" (p.14).

NGOs played a major role in the education of students with special needs and many of them refer them to private schools (ElZein, 2009), especially that the ministry of education does not have a proper strategy to implement the part of law 220 that ensures access to education for students with disabilities (CSO, 2010). Currently, the main provider of educational services for students with special needs and in particular students with learning disabilities is only a handful number of schools from the private sector (Arab Resource Collective, 2007; Peters, 2009), who, with its attempts at the national level, seek to develop human and environmental capacity to mainstream students with special needs (WawLphu, 2007)

Some Lebanese private schools' administrators, geographically clustered in the capital Beirut, have developed their own special education programs. The offered services range from full inclusion, to pull out programs, and resource rooms. These schools' policies, and more specifically classroom assessment practices, are internal administrative responsibilities and consequently are different in terms of their form, emphasis and frequency of use across the country. McBride et al. (1999) reported "the current configuration of private schools is problematic because they are free to screen out children who are likely to have learning difficulties or to expel them without consequences" (p.11). Hatoum (2010) summarized that Lebanon was war-torn developing country that lacks a special education and related services infrastructure. As of 2014, the situation remains at the status quo.
"Education is intended to provide all students with the skills and competencies they need to enhance their lives" (Salvia et al., 2010, p.3). However, when students with learning disabilities are denied proper and suitable educational programs, they may possibly become locked into a chronic cycle of poverty (Elwan, 1999; Yeo, 2001). Indeed, people with disabilities are among the poorest strata of Lebanese Society (Central Administration of Statistics, 1997; Wehbi\& El-Lahib, 2007). Exclusion from appropriate education may also translate into minimal social network, poor health and low self-esteem. Consequently, income generating opportunities become further reduced, driving to chronic poverty, further exclusion, and higher risks of illness, injury and impairment (Elwan, 1999; Peters, 2008).

Considering that basic education is a critical factor in economic expansion and forms a principal component in any development strategy (Akkari, 2004), it is important to identify and address the different learning needs that children may have in the early years.This helps pave the way to placing them all on an equal footing in their access and completion of basic education, and in achieving significant learning outcomes (Opertti \& Belalcazar, 2008).

It is imperative to examine current assessment practices of students with learning disabilities in Lebanese elementary schools.Considerations of assessment practices should be integral to efforts to enhance teaching and learning (Harris \& James, 2006), especially that a large portion of classroom time is allocated to the assessment of student learning (Mertler, 1998). The proper assessments enable school personnel to identify students' current level of skills, to target instruction at students' personal strength and weaknesses, to monitor student progress and make adjustments in instruction, and to evaluate the extent to which students have met instructional goals (Salvia et al., 2010). Additionally, in order to increase educational attainment of students with learning disabilities, assessment efforts are needed at the earliest grades, where
the schooling gap between children with and without disabilities starts (Filmer, 2008). Hence, there is a need to target Lebanese elementary schools in this study.

Purpose of the Study

Given the situation regarding special education in Lebanon, the purpose of this study is to documentthe classroom assessment practices of students with learning disabilities in Lebanese private schools. The study intends to describe the overall assessment practices of teachers working with students with learning disabilities, as well examine differences in practices and determine favorable variables that contribute to improved learning through successful assessment practices.Specifically, the aim of this research study is to gain an understanding of the nature of classroom assessment practices and establish a research baseline for future investigations. Practicing teachers will be surveyed to determine how they assess the special education student's performance and learning within the specific mandates of their school administration.

The evaluation model that will be adopted is the CIPP model, a model that requires the evaluation of context, input, process and product in judging assessment practices. Stufflebeam (2003) provides a formal definition of evaluation underlying the CIPP model:
"Evaluation is the process of delineating, obtaining, providing, and applying descriptive and judgmental information about the merit and worth of some object's goals, design, implementation, and outcomes to guide improvement decisions, provide accountability reports, inform institutionalization/ dissemination decisions, and improve understanding of the involved phenomena" (p.34).

The key ideas in the CIPP model are summarized in four main tasks: delineating, obtaining, providing and applying information to guide decisions, provide evidence and accountability and understanding of the dynamics of classroom assessment practices (Stufflebeam \& Shinkfield, 2007).

Limitations

1. The absence of a clear vision, strategy, and policies for the whole education sector in general (Karam, 2006), and for the special education sector in particular, and the absence of organizations collecting reliable information useful for national or international extrapolation, hinder systematic efforts to theorize and refine concepts able to address, in a contextualized and comprehensive fashion, processes of educational change (Mazawi, 1999) and the creation of a special education national assessment protocol. Therefore, it is feared that the recommendations resulting from the study will not be taken into consideration for educational improvement.
2. There is a lack of coordination between various private schools, which will make generalizingassessment practices difficult. Similarly, there is limited coordination between the ministry of education and higher education and private schools (Karam, 2006), potentially resulting in the absence of accountability for the schools' assessment practices.
3. The CIPP model will be adopted for this study. CIPP critics argue that even though the model seems thorough, complete, robust and egalitarian (Tan et al. 2010), it is too idealistic and does not take into consideration a number of situations and practices that might impede the evaluation's flow and smoothness (e.g. politics within the school departments) (Robinson, 2002). Therefore, it is imperative to factor in any anticipated obstacles within the planning stages of the research.

Operational Definitions

1. Learning Disability: Specific learning disability refers to heterogeneous clusters of disorders that significantly impede the normal progress of academic achievement. The lack of progress is exhibited in school performance that remains below expectation for
chronological and mental ages, even when provided with high-quality instruction. The primary manifestation of the failure to progress is significant underachievement in a basic skill area (i.e., reading, math, writing) that is not associated with insufficient educational, interpersonal, cultural/familial, and/or sociolinguistic experiences. The primary severe ability achievement discrepancy is coincident with deficits in linguistic competence (receptive and/or expressive), cognitive functioning (e.g., problem solving, thinking abilities, maturation), neuropsychological processes (e.g., perception, attention, memory), or any combination of such contributing deficits that are presumed to originate from central nervous system dysfunction. The specific learning disability is a discrete condition differentiated from generalized learning failure by average or above (> 90) cognitive ability and a learning skill profile exhibiting significant scatter indicating areas of strength and weakness (Kavale, Spaulding \& Beam, 2009).
2. Assessment: The process of collecting data for the purpose of (1) specifying and verifying problems, and (2) making decisions about students (Salvia et al., 2011)
3. Formative Assessment: intended to assess ongoing program/project activity and provide information to improve the project. Assessment feedback is short term in duration.
4. Summative Assessment: assessment that is done at the conclusion of a course or some larger instructional period (e.g., at the end of the program). The purpose is to determine success or to what extend the program/project/course met its goals
5. Assessment for Learning: a continuous process that informs students about themselves and what progress they are making toward meeting each standard while the learning is happening (Stiggins, 2005).
6. Traditional Assessment: Conventional methods of assessment mostly using multiple choice tests, matching, fill in the blank, and true or false (Dikli, 2003). In general, students choose a response from a given list.
7. Alternative Assessment: assessment in which students create a response to a question, including interviews/ conferences, performance tasks, exhibitions and demonstrations, portfolios, diaries/ journals/writing folders, checklists/ rating scales/ rubrics, observations/ anecdotal records, self- and peer-evaluation (Worley, 2001)

CHPATER 2

LITERATURE REVIEW

The Arab and Muslim world

"Not all Arabs are Muslims and certainly not all Muslims are Arabs." (UNESCO, 2008, p.9)

The Arab world refers to Arabic-speaking states, territories and populations in North Africa, and Western Asia.The standard definition of the Arab World comprises of 22 countries of the Arab League stretching from the Atlantic Ocean in the west to the Arabian Sea in the east, and from the Mediterranean Sea in the north to the Horn of Africa and the Indian Ocean in the southeast (Algeria, Bahrain, Djibouti, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Malta, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates and Yemen).It has a combined population of around 340 million.

The Muslim world consists of many countries that have Muslims as major inhabitants. As of 2009, over 1.6 billion or about 23% of the world population are Muslims. Of these, around 62% live in Asia-Pacific, 20% in the Middle East-North Africa, 15% in Sub-Saharan Africa, around 3\% in Europe and 0.3% in the Americas.So the Arab world is considered to be a part of the Muslim world. An Arab could be Muslim, Christian, Jewish or atheist. A Muslim could be Arabian, Asian, American, or a member of virtually any country.

Current Situation of Education in the Arab World

Education in the Arab world is described as "Laggards trying to catch up", and "one reason that too many Arabs are poor is rotten education" (The Economist, 2009, p.1). Throughout the

Arab region, people are dismayed by the shortcomings in their societies that are characterized by weaknesses in the educational system, its approaches, materials and institutions (El-Baz, 2007). Arab researchers tended to view educational change as largely dependent on leaders and policy makers (Mazawi, 1999), who in turn believe that expenditure in scientific research is a luxury that only rich countries could afford (El-Baz, 2007).

This might explain the reason why the number of mental health citations published in Arab countries over the last 15 years represented only 1.2% of the total PubMed citations for biomedical research, and 8.6% of learning disorders (Afifi, 2005). According to Afifi (2005), the Eastern Mediterranean Region lacks planned, purposeful research programs linked to the development and improvement of educational services and trainings. A comparative study of education systems, compiled by Shanghai Jiao Tong University (ARWU, 2012) only included3 Arab universities in its list of the world's top 500 universities (and the three were Saudi universities). This confirms the overarching research patterns in the Arab world, whether about mental health, education or service programs are suffering compared with the western trend, especially the academic bodies (universities) that are supposed to be the engine of new knowledge production through research publications.

Considering the above mentioned status of education in the Arab world, what becomes evident is the absence of research, statistical data, and documentation related to learning disabilities and educational assessments of that population. Many facts about assessment practices of students with learning disabilities are unknown and hence have not been systematically addressed. Knowledge about educational practices for students with learning disabilities is limited: figures are sketchy and limited to very divergent rough estimates based on census, survey, registration information and on aggregated estimates of the epidemiology of
specific conditions (Elwan, 1999). The literature has given much attention to the lack of data regarding students with learning disabilities. There is already evidence to support the probability that significant numbers of these children are underserved (Peters, 2009).

Even though Lebanon signed the U. N. Convention on the rights of Persons with disabilities, which has now entered into international law, little systematic empirical analysis has been conducted on which to base its commitment. In parallel, despite the fact that Mji et al. (2009) considered the convention to be "perhaps the most significant - moral and practical- step toward realizing the rights of people with disabilities" (p.2), limited reference to any assessment practice of children with any type of disabilities is acknowledged.

At best, the situation in Lebanon is similar to that of the remainder of the Arab world; ElZein (2009), however, considered Lebanon not as developed as other Arab countries in the field of special education and inclusion of students with learning disabilities. A gap exists in the empirical knowledge on the experiences of students with learning disabilities, yet this knowledge is essential in order to better target educational intervention (Wehbi \& El-Lahib, 2007) and improve assessment practices. In developing countries, conceptual and definitional problems abound (Elwan, 1999), and Lebanon is not an exception.

Although educational assessment is defined as a measure of a student's competence (Salvia et al., 2010), those competencies need to be clarified and identified by defensible criteria (Fitzpatrick, Sanders, \& Worther, 2011). Lebanon has struggled to meet that requirement in the shadow of its public educational sector situation (Kobeissy, 1999).Turning to the West and learning from their experiences is probably inescapable, although certainly is no
panacea,.Ultimately, of course, the reformation of the Lebanese special education system must come from within Lebanon itself.

Traditional Assessmentin the West

Traditionally, assessment has been viewed as an avenue for verifying student learning (Bintz, 1991) and it takes place after the learning:
> "Traditionally, evaluation has been seen as an outside force that is imposed upon the curriculum generally and the learner specifically. It has been externally imposed because of several assumptions- that the questions which drive the curriculum must be supplied by outside recognized experts, that the vast majority of what is to be learned is already known, digested, and organized, and that there are acknowledged correct responses to the curricular questions which are to be asked."(Short \& Burke, 1991, p.60).

Berlak (1992) explained that traditional assessments held the assumption that knowledge had a single consensual meaning; especially that facts and values are distinct and separable entities that can be measured objectively. Berlak (1992) noted that traditional assessment was exclusively used to monitor students' learning. As a result, this model separated high level from low level learners, creating a system that classified and ranked students.

Anderson (1998) considered traditional assessment as a passive process where students memorized the knowledge given by the material or the teacher. Hence, the frequent use of the empty vessel metaphor to describe learners. The teacher's role was "to fill the students by making deposits of information which the instructor considers to constitute true knowledge" (Freire, 1990, p.60). The focus was on learning content rather than on how to obtain information (Anderson, 1998).

Another focus of traditional assessment was essentially on the students' cognitive abilities. Their values and interests were considered disconnected from their ability and competences to complete the tasks at hand (Raven, 1992). Traditional assessments embraced a hierarchical model of power and control where the power to make curricular and assessment decisions was in the hands of the educator alone. Students had no part in decisions about what constituted important learning to them, nor were they offered a chance to determine how well they were learning (Heron, 1988; Sessions, 1995).

An overriding concern in research studies of teachers' traditional assessment practices is the limited and infrequent use of statistical data analysis (Gullickson, 1986; Marso \& Pigge, 1987, 1988). Lack of statistical knowledge and training, in addition to teachers' discomfort toward this discipline may have led to a devaluating perspective on the use of statistical procedures (Mertler, 1998).

Bertrand (1993) noted that traditional assessments evaluated student's work based on tests, and their final scores were representative of their learning, disregarding the how and why of student learning, hence separating the process from the product (Anderson, 1998). Herman et Al. (1992) and Engel (1994) described traditional assessment as focusing on mastering discrete and isolated bits of information that represented lower level thinking skills. Johnston (1992) added that students were considered cheating if they completed the assessment tasks with the assistance of others, since traditional assessments perceived learning as an individual enterprise. Therefore, students worked competitively against one another.

A report issued by The National Commission on Testing and Public Policy (1990) noted the necessity of transforming the testing movement to focus on the development of the human
potential and on allocating greater opportunities to the learners from Kindergarten through the workplace. Other sources such as Haney and Madaus (1989), and Livingston et al. (1989), were aligned in pointing out similar major problems with the ongoing testing practices at the time. Traditional testing provided a misleading information and insufficient view of student learning and failed to explain the approach that students adopted to respond in a particular way to test items (Choate \& Evans, 1992). Many traditional tests were unfair toward minorities and students with disabilities, using biased language and culturally-specific examples (Choate et al., 1992), while "Students with disabilities ... should be provided opportunities to learn and demonstrate their mastery of material under circumstances that take into account their special needs" (National Council on Education Standards and Testing, 1992, p.10). Researchers argued that traditional tests were being generally culturally biased and were more likely to favor white, middle class, native English speaking students (Gomez, Graue, \& Block, 1991). The progress in International Reading Literacy (PIRLS, 2006) revealed teacher classroom assessment practices were an issue at the international level, and a limited range of classroom assessments are utilized in over 40 countries (Mullis et al., 2008).

In the midst of the public's dissatisfaction with traditional assessment practices, and parents and educators wanting more than simple tests scores that are not necessarily representative of what students could actually do, teachers demanded radical change in assessment that could provide them with a base for instructional decisions (Poteet, 1993). Coutinho and Malouf (1993) noted that the increasing use of alternative performance assessment was expected to redirect curriculum and instruction toward current and more holistic theories of learning. As Wiggins (1989) described it: "if tests determine what teachers actually teach and what students will study for-and they do- then the road to reform is a straight but steep one: test
those capacities and habits we think are essential, and test them in context" (p.41).It was clear an array of new assessment strategies capable of addressing the different learning styles and backgrounds was needed (Halpern, 1994).

Assessment for Learning

Harris and James (2006) noted that the scrutiny of approaches to the assessment of student learning at all levels was taking place alongside broader reflection on teaching and learning practices. Reconsiderations of assessment practices were to be integral to the efforts to enhance teaching and learning. Supporters of assessment reform such as Stiggins (1999, 2001, and 2002) and Guskey (1994, 2003) proposed intrinsic changes to teachers' assessment approaches and strategies, based on the idea of assessment for learning rather than assessment of learning (Duncan \&Noonan, 2007).Even though there appeared to be a consensus that testing and assessment should be useful in guiding teaching, Leahy et al. (2005)observed that the information usually arrives too late to be useful, especially that many schools test their students at the end of the marking period. Black et al. (2004) and Boston (2002) discussed improving student learning through the use of classroom formative assessment, in addition to the use of alternative practices such as peer and self-assessment (Rolheiser \& Ross, 2000).

The search for new assessment modalities characterized by a better alignment to students learning how to learn resulted in a growing interest in assessment for learning. Black and William (1998b) conducted a review and meta-analysis of research into classroom assessment practices.They analyzed 250 studies, 50 of which provided evidence of achievement gains after interventions based on what is now called Assessment for Learning practices. They found that the students of teachers who implemented formative assessment strategies scored greater
learning gains than those of control groups. These gains, measured by pre and post summative tests, produced standardized effect sizes of between $\mathrm{d}=0.4$ (moderate) and 0.7 (nearly large), which is larger than many educational interventions. Cohen's (1969) effect size specifications of .2 as small, .5 as medium, and .8 as large are widely accepted (Orwin, 1983).Moreover, there was evidence that gains for lower-attaining students were even greater (James et al., 2007) and appeared to be consistent across countries including Canada, England, Israel, Portugal and the United States, as well as age brackets (Leahy et. al 2005).

The innovations introduced into classroom practice in these studies defined the territory of assessment for learning, summarized as the following elements:

1. Developing classroom talk and questioning: Engineering effective classroom discussions, questions and learning tasks.
2. Giving appropriate feedback: Providing feedback that moves learners forward.
3. Sharing criteria with learners: clarifying and sharing learning intentions and criteria for success
4. Peer and self-assessment: Activating students as instructional resources for one another and as the owners of their own learning.

Frey and Schmitt (2007) raised the question whether formative assessment and assessment for learning are synonymous concepts, and whether they were only two different ways of advocating for the same practices for the same reason. Their distinction between the two is based on the purpose of each assessment. Formative assessment's purpose is to provide feedback to the teacher to assess the quality of instruction or to improve teaching behaviors, or to provide feedback to the student to assess the quality of learning and to improve learning
behaviors. Assessment for learning's purpose is to provide feedback to students to assess the quality of and to improve learning behaviors. Hence, some formative assessment is assessment for learning but not all.

Black et al. (2003) considered the term formative in formative assessment did not apply to the assessments, but rather reflected the functions assessments serve in supporting the learners' acquisition of competencies and providing evidence that guides the evolving adaptation of teaching to meet learning needs. This functional view suggested that adequate implementation and use of formative assessment depends on the learning approach adopted in the classroom and teachers' knowledge, skills and strategies they utilize torealize complex pedagogical processes (Webb \& Jones, 2009); hence the emergence of the new term, Assessment for Learning (AFL).

Black et al. (2003) defined assessment for learning as "any assessment for which the first priority is in its design and practice to serve the purpose of pupils' learning" (p. 2). Klenowski (2009) defined assessment for learning as "the process of identifying aspects of learning as it is developing, using whatever informal and formal processes best help that identification primarily so that learning itself can be enhanced" (p.263). Researchers at The Third International Conference on Assessment for Learning (2009)provided a definition as "Assessment for learning is part of everyday practice by students, teachers and peers, that seeks, reflects upon and responds to information from dialogue, demonstration and observation in ways that enhance ongoing learning"(p.2). The Assessment Reform Group in the UK (2002)further defined assessment for learning as "the process of seeking and interpreting evidence for use by learners and their teachers to decide where the learners are in their learning, where they need to go and how best to get there" (p. 2).

Shepard (2000) viewed assessment for learning as a fundamental element in effective and motivating instruction. It was in fact considereda leading avenue in achieving compelling improvements in the learners' ability in learning how to learn (Tillema et al., 2011). Itwould be promotedby funneling assessment'sprime function to incite adaptive, student focused feedback on his/her learning progress (Birenbaum, 2007; Doechy \& MacDowell, 1997). Consequently, there were calls for new modes of assessments favorable to such a promotion of learning and assessment (CCSSO, 2009), which were meant to scaffold coherent, authentic, personalized, direct, and practical information to the learner (McMillan, 2007).

Assessment for learning primarily aims at facilitating reaching improved learning outcomes versus being reduced to just measurement tools summing up student achievement (Birenbaum, 1996; Dierick \& Dochy, 2001; Sadler, 2010). Researchers emphasized the necessity of aggressively embedding such assessment tools in the teaching and learning process (Segers et al., 2004; Shepard, 2000). In their study of classroom practice associated with embedded formative assessment, or in other terms assessment for learning, Webb and Jones 2009) reported that students were becoming more responsible for their own learning and increased their support for each other in assessing their learning. Teachers who participated in that study identified assessment for learning as an educational philosophy where learners take responsibility for their learning by developing an understanding of what and how they learned through a two-way feedback.

Elwood and Klenowski (2002) discussed assessment for learning within the constructivist paradigm that underpins changing assessment practices where the focus shifts to a studentcentered approach. Students' peer and self-assessment are added to the teachers' toolkit as essential parts of the social processes "that mediate the development of intellectual abilities,
construction of knowledge and formation of students' identities" (Shepard, 2000, p.4). Constructivist theories provide then a theoretical support for Assessment for Learning since they view students as actively engaged in constructing meaning from their own experiences, giving meaning to new learning and evaluating how to integrate it and connect it to previously internalized concepts (Elwood \& Klenowski, 2002).

In 2007, the office of Standards in Education, Children's Services and Skills (Ofsted) in the UK conducted a research study inspecting assessment in English or math in 27 primary and 16 secondary schools. The report issued in 2008 expressed assessment for learning as central to personalizing learning in schools. Its formative nature makes it a constant practice in the classroom, played out as a joint activity between the teacher and the learner. The practice of selfassessment targets to close the gap between the student's present state of understanding and the intended goal. One of the teacher's central rolesis to ensure that students understand how to assess their progress and more critically to adjust teaching inthe light of that. "Assessment for learning is about using information gained to improve learning and teaching" (Ofsted, 2008, p.8).

Assessment for Learning and Students with Learning Disabilities

Within the special education discipline, many students with learning disabilities (LD) encounter social and emotional difficulties (e.g., Bryan, 2005; Fisher, Allen, \& Kose, 1996; Huntington \& Bender, 1993; Rourke, 1991, 2005; Rourke \& Tsatsanus, 1996; Siegel, 1998, 2003; Siegel \& Ryan, 1989; Silver, 1988; Stanovich, 1986; Stone \& La Greca, 1990; Valas, 1999). They are often overwhelmed in learning situations (Salend, 2005), especially that the majority has difficulties in reading, an essential skill for comprehension and school survival (McNamera, 2007). According to Gersten et al. (2001), one of the most important skills students
with learning disabilities need to learn is how to learn, hence improving their reading skills and rates of success. Knowing that certain techniques and strategies can be used to assist learning, knowing which techniques are useful in which kinds of learning situations, and knowing how to use the techniques as powerful tools that can enable students with learning disabilities to become strategic, effective, and lifelong learners (Elhoweris et al., 2011).

Assessment for learning, underpinned by the confidence that every student can improve (Assessment Reform Group, 1999), empowers underachieving students by providing opportunities to develop their learning and metacognition (Hendry, 2006). Described as a student centered approach (Elwood \& Klenowski, 2002), assessment for learning mediates "the development of intellectual abilities, construction of knowledge and formation of students' identities" (Shepard, 2000, p.4). Such attributes of assessment for learning make it an essential element of special education classroom assessment practices, especially when the field of special education emphasizes the individual student and her/his educational needs (Shriner, 2000).

Harris and James (2006) noted that assessment will be most effective if students understand its purpose, what they are required to do and the standards that are expected. There is compelling evidence that students' conceptions of educational assessments have a considerable impact on the quality of their educational experiences and learning (Entwistle \& Entwislte, 1991; Marton \& Saljo, 1997; Ramsden, 1997). Students who lack confidence to achieve tend to achieve less (Bandura 1989; Pajares 1996), especially students with learning disabilities who have recurrently experienced academic difficulties and failures. But, involving them in meaningful assessment practices where they have the opportunity to maximize their conception of assessment as a process that increases their personal accountability helps them improve their achievement (Brown \& Hirschfeld, 2008). These concerns weretypically addressed byassessment
for learning where sharing learning goals with students and helping them recognize the standards they are aiming for (Assessment Reform Group, 1999) are considered among its main characteristic.

Segers et al. (2003a, 2003b) and Struvyen et al. (2003) suggested students should be active participants in the assessment process in addition to be involved in the understanding of how the assessment process actually occurs. They observed that students have a tendency to display a positive attitude towards assessment tasks and methods if they perceive it as fair and positively affecting their learning. Formative, active and creative modes of assessment such as the ones promoted by assessment for learning including self-assessment and assessment of the learning process, promote student's focus on the construction of knowledge and deep understanding, while traditional forms of assessments emphasized the focus on memorization and grades rather than learning itself (Stuvyen et al. 2005).

A recent study conducted by Dynamic Assessment of Functioning and Oriented at Development and Inclusive Learning (2011) showed that less than 5\% of the 166 professionals included in the sample (medical, psychological, educational professionals and parents in Sweden, Portugal, Hungary, Romania, Norway, and the Virgin Islands) used formative assessment and contextual observation to report learning or developmental potential in a process-oriented way, in correlation with a general dissatisfaction ofthe experts with current assessment practices. The study revealed assessment practices were mainly used to decide a child's special education placement, depending on the country's availability of inclusive education (Lebeer et al.,2011).

The UN convention stated that inclusive education is a fundamental human right for every child. But one of the main barriers to learning and mainstream participation of all students
with special needs with their non-disabled peers is the way these children are being assessed (Lebeer et al., 2011). The European Agency for Development in Special Needs Education conducted a research project and recommended the development of systems for on-going formative assessment in mainstream schools by giving schools and classroom teachers' tools capable of assessing all students, including those with special needs (Bauer et al., 2003).

Ethics in Classroom Assessment Practices

The Progress in International Reading Literacy Study (2006) indicated that teacher classroom assessment practices were an issue at the international level, showing the usage of a limited range of classroom assessment practices in over 40 countries (Mullis et al., 2008). Inevitable issues were raised related to assessments' ethical concerns as practices evolved (Pope et al., 2008).Classroom assessment practices were likely to occur repeatedly, and the consequences of the errors and abuses are cumulative. Mounting calls for assessment-focused professional development in countries such as Canada (Volante \& Fazio, 2007), the United Kingdom (O'Leary, 2008), the United States (Pope et al., 2008) and Taiwan (Wang et al., 2008) reinforced the widespread nature of these concerns.

Airasian (2005) proposed that the assessment ethical standards should indicate "some aspect of a teacher's fairness in dealing with his or her pupils" (p.20). Likewise, Taylor and Nolen (2005) discussed poor assessment and its significant impact on students and noted that "the ethical responsibility of educators is first, Do No Harm" (p.7). Originally a principal of medical ethics, Do No Harm in the context of education, requires that "teachers act in such a way as to avoid causing harm to students as well as other individuals" (Pope et al.; 2008, p.779).

The application to assessment of the Do No Harm principle was also suggested by Popham (1991) and Haladyna et al. (1991) as the score pollution principal, as they discussed ethical standardized test preparation. Based on Messick's research (1984), score pollution refers to factors affecting test score interpretations and their truthfulness. The connection between the student's test performance and the construct could easily increase or decrease due to the presence of pollution, producing construct-irrelevant test score variance (Haladyna et al., 1991). When the assessment or test score is not representative of actual academic achievement, it might be polluted by extraneous factors. For example, teachers who practice test items with their students produce score pollution since the scores no longer measure content mastery, rather the student's ability to memorize and recall familiar items.

Hence, score pollution is considered an ethical issue in assessment practices because polluted scores give a false representation of the students' mastery of the assessed subject. Green et al. (2007) applied the score pollution principle to other elements of classroom assessments, emphasizing that grades should only reflect the mastery degree of the anticipated instructional outcomes. Many classroom teachers modify students' grades due to presence or lack of effort, behavior problems, late work and extra credit. These polluting actions overstate or understate the learner's true level of knowledge or understanding mastery. When polluted scores are used in decision making, a serious ethical concern arises.

A variety of problematic situations for both teachers and students are generated such as students getting good grades on their report cards yet scoring very low on state or national standardized assessments. Furthermore, Pope et al. (2009) discussed the dilemma faced by some teachers who felt that the needs of students in special education were often compromised by institutional requirements such as the school's grading policy, the use of standardized testing, or
social promotion. Theyfelt conflicted when they were required to assess students on materials and content they knew they had not mastered, or were forced to promote students who were not ready for the next grade level material.

To address the frustration and concerns of many educational researchers and educational professionals, who wanted classroom evaluations and assessments to better serve student learningand the urgency to change student evaluation practices (Gullickson, 2005), the Joint Committee on Standards for Educational Evaluation published The Student Evaluation Standards (JCSEE, 2003, currently being revised) suggesting 4 types of standards:

1. Propriety standards: "help ensure that student evaluations will be conducted legally, ethically and with due regard for the well-being of the students being evaluated and other people affected by the evaluation results"
2. Utility Standards: "help ensure that student evaluations are useful, informative, timely, and influential."
3. Feasibility Standards: "help ensure that student evaluations can be implemented as planned, are practical, diplomatic, and adequately supported
4. Accuracy Standards: "help ensure that a student evaluation will produce sound information about a student's learning and performance which leads to valid interpretations, justifiable conclusions, and appropriate follow-up."

Evaluation Practices: Some Background

The historical development of evaluation is difficult, if not impossible, to describe due to its informal utilization by humans for thousands of years (Hogan, 2007). It is often mistakenly viewed as a recent phenomenon; however, it has an interesting history (Madaus \& Stufflebeam,
2000). The following is a modest overview describing evaluation practices in the Arab countries and in the West.

Evaluation Practices in the Arab Countries.

Historically, educational evaluative practices in the Arab region had been mostly advanced in the form of top down grand plans mandated through policies at the national level of school governance. Mandated initiatives in these plans, when available, never addressed procedural issues at the micro level of the school and the practitioner (Bashsur, 1982, 2005). It is apparent that the rationale of these policies did not stem from evaluative measures and did not grant evaluation its righteous role in guiding reform decisions and supporting change through evidence. Ministries of education in Arab states rarely invest in funding or supporting individuals or institutions to conduct policy evaluation research that focus on local educational problems. Moreover, there is no evidence that these plans followed a specific evaluative design that was purposefully planned or was grounded in any form of program evaluation models. The data collected rarely originated from needs assessment activities, monitoring of progress during implementation, or summative evaluation of impact (Karami-Akkary \& Rizk, 2011).

In the few occasions where educational evaluation was completed in the Arab world, there is an obvious absence of stakeholders' involvement and the obtained results are typically not fed back into the improvement process. Stored on the shelves or drawers of the few Arab educational researchers, it seems like educational evaluation is seen as a goal by itself rather than effectively put to use as a tool for change and improvement.

In the midst of the scarcity of evaluation approaches in the Arab world, turning to sources from developed countries and learning from their previous experiences becomes necessary.

Current Evaluation Practices in Developed Countries: Empowering Stakeholders and Decision Making.

Robert Stake's work is considered the historical antecedent of participant oriented evaluation models (Fizpatrick et al. 2011). Collecting the views of different stakeholders and giving legitimacy to those was new. Guba and Lincoln's naturalistic and fourth-generation evaluation moved evaluators to more broadly consider stimulating dialogue and action among stakeholders. Stufflebeam, building on Guba, writes, "Evaluation's most important purpose is not to prove but to improve" (2004b, p.262). Today, the evaluation model he calls CIPP (Context, Inputs, Processes, and Products) recommends involving many stakeholders, even when the focus remains on decisions. He writes, "evaluators are expected to search out all relevant stakeholder groups and engage them in communication and consensus building processes to help define evaluation questions, clarify evaluative criteria; contribute needed information; and reach firm, defensible conclusions" (2005, p.62).

In another type of participant oriented evaluation approaches called objectives-oriented evaluation approaches, evaluators engage the stakeholders in dialogue so that they can learn more about the program, begin to develop a relationship with the stakeholders, and thereby gain a better understanding of what the evaluation might do. Similarly, in Patton's UtilizationFocused Evaluation (UFE), the personal factor is a central element. Patton defined it as "the presence of an identifiable individual or group of people who personally care about the evaluation and the findings it generates (2008a, p.66). Patton makes use of intensive primary stakeholder involvement to achieve the intended use of the evaluation (Fitzpatrick, Sanders, \& Worthen, 2011). Similar to Cousins and Earle (1992, 1995), Greene (1988), and others, Patton believed that involving stakeholders increases their sense of ownership in the evaluation, their
knowledge of it, and ultimately, their use of the results. Furthermore, Patton's emphasis on the personal approach and relationship was extended to a focus on the decision makers and the dialogue with them to determine what decisions they think they will make. Comparably, Christie's work (2003) illustrated the centrality of stakeholder involvement to evaluation theories.

Analogously, Cousins and Earl (1992) developed a Practical Participatory Evaluation (PPE) approach built on evidence from research. An important point among this evidence was that the use of evaluation results is enhanced by communication, contact, and collaboration between evaluators and primary stakeholders; that is, those who are most interested in results and in a position to use them.

The choice of an evaluation model for this research is based on the attempt to empower key stakeholders, and most importantly on conducting a rigorous evaluation in order to obtain reliable and systematic evidence to support any conclusion and decision, which is, according to Robinson (2002), a common key factor to all evaluation models. Evaluations are therefore a process of quality improvement (Stufflebeam \& Shinkfield, 2007) and their process should serve to emancipate and empower key stakeholders (Stufflebeam, 2008), hence the choice of the CIPP evaluation model to improve the quality of classroom assessment practices of students with learning disabilities in Lebanese private schools and to give a voice to the teachers in developing that improvement.

CIPP

The CIPP evaluation model is one of the most widely applied evaluation models (Zhang et al., 2011). A survey by the American Society for Training and Development found that the

CIPP model was preferred over other evaluation models (Galvin, 1983). The model has been well researched and found to be valid and accurate to evaluate educational programs (Green et al. 1998; Stufflebeam 2002). It constitutes a comprehensive framework for various types of educational projects and organizations, including program evaluations. Stufflebeam and Shinkfield (2007) wrote, "The CIPP is a comprehensive framework for conducting formative and summative evaluations of projects, personnel, products, organizations, and evaluation systems" (p.325). Stufflebeam further points out that the most fundamental principle of the model is "not to prove, but to improve" (Stufflebeam \& Shinkfield, 2007, p. 331).

As the CIPP evaluation model has been utilized and implemented in various settings over the years, the approach was affected by changes in evaluation practice and learning where today's CIPP recommends the involvement of additional of stakeholders. Although the original CIPP model focused on managers as the primary stakeholders, it is now involving many stakeholders through an interactive relationship between evaluator and client, as well as keeping the focus on decisions where priority is given to improvement efforts (Tan et al. 2011). Providing equity for stakeholders and decision makers is one of the important considerations of the CIPP model, recommending that communication be kept open to allow data collection and any additional analysis and synthesis (Tan et al. 2011).

Stufflebeam (2003) described CIPP as a model that was developed in the late 1960s for the purpose of helping U.S. urban, inner city schools improve and achieve accountability. This model "is configured especially to enable and guide comprehensive, systematic examination of social and educational projects that occur in the dynamic, septic conditions of the real world ..." (Stufflebeam \& Shinkfield, 2007, p. 351). The model has been refined over the years (Alkin, 2004) and used by a wide range of disciplines (Stufflebeam \& Shinkfield, 2007). Specifically in
educational settings, the CIPP evaluation, model has been utilized to evaluate a wide variety of projects (Zhang, et al., 2009; Zhang et al., 2008). For example, Felix (1979) adopted the model to evaluate and improve instruction of the Cincinnati, Ohio school district. Nicholson (1989) suggested its use to evaluate reading instruction. Based on the CIPP framework, Mathews and Hudson (2001) developed guidelines for the evaluation of parent training projects. It was used in Taiwan to construct the country's national educational indicator systems (Chien et al., 2007).

In Nigeria, Osokoya and Adekunle (2007) used it to assess the trainability of enrollees in the Leventis Foundation Agricultural Schools' Projects. Because of its flexibility in providing formative and summative results, Combs et al. (2008) developed a course assessment and an enhancement model using CIPP. Throughout the years, many exemplary applications of the model took place within the American educational sector like the ones conducted by Bob Randall of the Southwest Regional Educational Research Laboratory (1969); Howard Merriman of the Columbus School District, Ohio (1971); Jerry Walker of the Ohio State University National Center for Research on Vocational Education (1979); Jerry Baker of the Saginaw Valley School District, Michigan (1980); William J. Webster of the Dallas Independent School District, Dallas (1995); Carl Candoli of the Lansing school district, Michigan (1997); Gary Wegenky of the Des Moines School District, Iowa (2000).

Stufflebeam (2003) gave a formal definition of evaluation underlying the CIPP Model: "Evaluation is the process of delineating, obtaining, providing, and applying descriptive and judgmental information about the merit and worth of some object's goals, design, implementation, and outcomes to guide improvement decisions, provide accountability reports, inform institutionalization/ dissemination decisions, and improve understanding of the involved phenomena." (p.34)

The letters in the acronym CIPP correspond to the model's core concepts: context, input, process and product evaluation. The idea is that employing the four types of evaluation complements the information requirements of the stakeholders rather than replace existing information or reports (Guerra-Lopez, 1008), in addition the evaluator's advantage of ensuring that no part of the program is overlooked.

1. Context evaluation serves for planning decisions by determining what needs are to be addressed by a program. The evaluator defines the relevant context, identifies the target population and assesses its needs, in addition to identifying opportunities for addressing those needs and diagnosing their underlying problems.
2. Input evaluation serves for structuring decisions by considering organizational assets and potential interventions. It identifies procedural design and educational strategies that will most likely achieve the desired results.
3. Process evaluation serves for implementing decisions by making the necessary modifications. It monitors the implementation process and the procedural barriers, and identifies needs for adjustments.
4. Product evaluation serves the recycling of decisions by examining results and assessing outcomes. It measures, interprets and judges outcomes and interprets their merit, worth, significance and probity.

One of CIPP's most important strengths as an evaluation model is its aim to ensure that the findings are used by decision makers. It also aims at painting a comprehensive understanding of a project/program, its context and the processes at work (Robinson, 2002). Decision making and quality assurance are facilitated by its proactive application.

Critics of the CIPP model are concerned that despite its claim of encouraging a variety of stakeholders' participation, the focus is typically on managers. The worry is that stakeholders, who may not have a direct involvement in decision making, receive less attention and participation in defining the purposes of the evaluation, the means of data collection, and the interpretation of results (Fitzpatrick et al. 2011).

CHAPTER THREE

METHODOLOGY

Purpose of the study

The primary purpose of this study was to discover and describecurrent assessment practices of students with learning disabilities, in addition to administrators' and teachers' perceptions of those practices in special education in Lebanon via the CIPP (context, input, process, and product) evaluation model developed by Stufflebeam (1971). Ancillary to this purpose, it was possible to more formally statistically analyze and compare and contrast responses between administrators and teachers regarding the ethical component of assessment practices, as well as teacher and administrators' training and preparation for student assessment, their involvement in it, the impact they perceive student assessment practices were producing and their assessment practices of students with learning disabilities. T-tests and ANOVAs were used to determine if there were statistically significantly different responses to the survey questions with nominal alpha set to 0.05 .

CIPP Research Questions

Context Evaluation: In what kind of educational setting do assessment practices take place?

Context evaluation assessed organizational parameters related to assessment practices of selected schools in addition to the environment where assessments took place. Hence, context evaluation included schools' mission components of student assessment, their contentand
methods for student assessment, their assessment policies, theirethical practices, and their attitudes toward student assessment.

Input Evaluation: How prepared and involved are teachers and administrators in student assessment?

Input evaluation involved an examination of the teachers and administrators background and training in assessment. Data about teachers and administrators' level of preparation and inservices in addition their involvement in student assessment was collected.

Process Evaluation: How are assessments applied in the classroom?

Process evaluation related to the implementation of assessments (i.e., traditional assessment vs. alternative assessment). It also looked at the teachers practices of assessment for learning in its two components, monitoring and scaffolding.

Product Evaluation: What impact do assessment practices have?

Product Evaluation looked at the impact of student assessment practices. Participants reported about changes in (1) students' achievement (2) instructional or teaching methods and (3) student assessment plans, policies and processes. Product evaluation also looked into the impact of assessment practices on resource allocation and the hiring of specialists.

Target Population and Sample

1. Teachers working in Lebanese private schools instructing students with learning disabilities and performing classroom assessments.
2. Administrators working in Lebanese private schools that provide special education services for students with learning disabilities. Administrators could be principals, assistant principals, coordinators, special education department head, etc...

The accessible population was the targeted teachers and administrators as they represented the key components in the assessment process.

The sample consisted of 57 private schools in Lebanon that offered a special education program for students with learning disabilities. Because officials at private schools are not required by any law or policy to report their practice of special education services to the ministry of education and higher education MEHE, it was difficult to determine the number of these schools. A method for overcoming this limitation was to get from the ministry of education and higher education (MEHE) a list of schools that submitted exemption forms for their students from the national exams that usually take place in $9^{\text {th }}$ and $12^{\text {th }}$ grade for students. Parents of students with disabilities are usually advised by their child's attending school to either apply for his/her exemption from the national exams or ask for accommodations from the ministry's examination committee. The required documentation is a compiled school record of the student showing difficulties at school and a certifying assessment that the child had a learning disability.

In addition, a guide developed by the Lebanese Autism Society in 2009 provided a listing of 41 private schools servicing students with special needs.

Once the list was compiled, officials at the schools were contacted, as part of the Wayne State University HIC protocols, in order to disseminate and collect human subjects, using informed consent forms for teachers and administrators. Appropriate permissions were also obtained from the ministry of education and higher education.

The sampling rules consisted of including any Lebanese private school with special education services whose teachers and administrators were willing to participate in the study.

Data

Data Collection Instruments.

Two surveys were used to collect the data: One teacher survey and one administrator survey, written in English, French, and Arabic to accommodate all teachers.

Teacher's survey.

The teacher's survey was developed by selecting questions from three different surveys. The following is a brief description of each survey that was consulted and partially used.

1. Teachers' Assessment for Learning Questionnaire, TAFL-Q, developed by Pat-El et al. (2013). TAFL-Q was constructed for the purpose of evaluating perceptions regarding assessment for learning practices. A validation study for the instrument was conducted and the results showed a good fit for a two-factor solution with 28 items. The two factors in the questionnaire labeled monitoring and scaffolding cover many of the conceptually stated principals of AFL (instruction processes, feedback and self-monitoring). A request to use the instrument was emailed to the authors and permission was obtained.
2. Ohio Teacher Assessment Practices Survey, developed by Mertler (1998). The purpose of this survey is to gather information regarding the practices of teachers with respect to classroom assessments. It consists of 34 questions (12 scaled questions, 3 questions to be answered with a percentage, 7 open ended questions, and 12 multiple choice questions). Teachers are asked to respond to items that address their use of traditional assessment and
alternative assessment techniques, focusing on the frequency of use of these techniques. Additional items ask them to describe their comfort level with respect to assigning grades based on traditional versus alternative assessments, to describe any training they have received on the topic of student assessment, and to describe measures they take to ensure the validity and reliability of their classroom assessments. Finally, teachers are asked to indicate their gender, school setting, school level, years of experience, and subject area. A request to use the instrument was emailed to the author and permission was obtained.
3. Ethical Assessment Practices: Developed by Johnson et al. (2008), this 36 item webbased survey was designed with specific scenarios that depict practices in classroom assessment. The survey was structured in seven different categories related to student assessment: standardized test preparation, standardized test administration, multiple assessment opportunities, communication about grading, grading practices, bias, and confidentiality. The presented scenarios are based on The Student Evaluation Standards (JCSEE, 2003), The Principals for Fair Student Assessment Practices for Education in Canada (Joint Advisory Committee, 1993), and the experiences of the authors and their graduate students.

The Teachers' Assessment Practices Survey that was developed for the purpose of this research consisted of a selection of 59 items from the above instruments, divided as follow:
> 6 personal data questions
>10 questions about Traditional Assessment
> 10 questions about Alternative Assessment
> 12 questions about Assessment for Learning (6 Monitoring and 6 Scaffolding)
6 questions about ethical practices

3 questions about preparation and training
>4 questions about involvement in student assessment
5 questions about impact
3 questions about assessment practices of students with learning disabilities

Administrators' Survey.

Excerpts from the Institutional Climate for Student Assessment survey (2000) was selected and slightly modified to develop the administrators' survey. The Institutional Climate for Student Assessment (ICSA) survey has been developed by the research program on Institutional Support for Student Assessment for the National Center for Postsecondary Improvement (NCPI). Its primary purpose is to examine how the institution supports student assessment.

The Administrators' Survey for Assessment Practices that was used for the purpose of this research consisted of 59 scaled questions divided as follow:
> 6 personal data questions
>6 questions about the content of student assessment
>3 questions about the methods of student assessment
> 5 questions about the school's mission components
> 8 questions about assessment policies and practices
> 10 questions about attitudes toward assessment
>4 questions about involvement in student assessment
>6 questions about ethical assessment practices
>3 questions about preparation and training

5 questions about impact
3 questions about assessment practices of students with learning disabilities

Data Analysis

Both surveys internal consistency reliability were obtained via Cronbach's Alpha. A process of projecting Cronbach's Alpha if the item is deleted was used to determine if an item should be dropped from the scale to improve the overall scale reliability.

Additionally, a statistical analysis to compare and contrast between teachers'responses, administrators' responses, and teachers and administrators' responses regarding the different survey subscales were performed using t-tests and ANOVAS. The analysis helped determine if there were statistically significantly different responses to the survey questions, with nominal alpha set to 0.05 .

Power Analysis

$>$ Teachers

As of January 2014, there were 92 special education teachers officially registered with the Syndicate of Special Education in Lebanon. However, this number is not representative of the special educationteachers' population. Many teachers are hired to service special education students without necessarily holding a special education degree, in addition to the fact that not all special education teachers are registered with the syndicate. For the purpose of conducting an approximate power analysis, it was assumed that each participating school had at least 5 special education teachers and 5 regular education teachers working with students with learning disabilities (10 teachers $\times 57$ participating schools $=575$ total teachers).

Confidence level	95%	90%	85%	80%	75%
Estimated population size	575	575	575	575	575
Response distribution	50%	50%	50%	50%	50%
Recommended sample size	231	185	153	128	108

Administrators

It was assumed that schools had at least two administrators responsible for the schools' assessment practices of students with learning disabilities (2 administrators x 57 participating schools $=114$ administrators total).

Confidence level	95%	90%	85%	80%	75%
Estimated population size	114	114	114	114	114
Response distribution	50%	50%	50%	50%	50%
Recommended sample size	89	81	74	68	62

CHAPTER FOUR

RESULTS

Instrument Reliability

For the purpose of this study, Nunnaly's (1978) recommended level for acceptable reliability coefficient of .7 will be used.

Teacher's Survey.

Scale: Teacher's Survey - Traditional and Alternative Assessments, AFL.

There were 679 responses of which 210 were excluded due to missing values on the 51 items of the Teacher's Survey - Traditional and Alternative Assessments, AFL scale (mean $=139.76$, standard deviation $=15.85$), leaving a final $\mathrm{N}=469$ valid responses. Cronbach Alpha's coefficient for the 51 items was .85 , suggesting that the items have high internal consistency.

Item statistics for the first scale Teacher's Survey - Traditional and Alternative Assessments, AFL scale are stated in Table 1 below for mean and standard deviation. The lowest mean was for using essays to assess students, suggesting that teachers had the least agreement on this item (mean=1.28). The highest mean was for helping students understand the content through questions, suggesting that teachers had the most agreement on this item (mean=3.75).

Table 1
Item Statistics forTeacher's Survey - Traditional and Alternative Assessments, AFL
Mean Std. Deviation

Paper pencil	2.72	.90
Create own	2.76	1.00
Tests provided by curriculum	1.50	1.02
True/false	2.01	1.11
Multiple choice	2.23	1.08

Fill in the blank 2.30 1.09
Short answer 2.52 97
Essay 1.28 1.26
Means \& SD 2.26 1.35
Reliability Traditional Assessment 2.53 1.23
Item analyses 2.69 1.19
Paper pencil importance 78 3.00
Create own importance 76 3.18
Tests provided by curriculum 88 2.25
importance 86 2.75
Multiple choice importance 76 2.96
Completion importance 84
2.86
Short answer importance 80
Essay importance 1.18
Means \& SD importance 95
Reliability Traditional Assessment importance 86
Item analyses importance 3.16 80
Alternative Assessment 2.15 91
Create performance and portfolio 2.43 1.01
Performance and portfolio by curriculum 1.75 1.02
Informal observations \& questions 2.86 99
Portfolios 1.931.18
Exhibitions/presentations/recitals 1.99 1.10
Performance Assessment 2.42 1.09
Reliability Alternative Assessment 2.69 1.06
Alternative Assessment importance 3.12 69
Create performance and portfolio importance 2.95 72Performance and Portfolio bycurriculum importance
2.38 1.28
Informal observations \& questions importance 3.24 75
Portfolios importance 2.74 89
Exhibitions/presentations/recitals importance 2.80 90
Performance Assessment importance 3.02 79
Reliability Alternative Assessment 3.12 72
importance
AFL Monitoring 1 55 3.56
AFL Monitoring2 71
AFL Monitoring3 72
AFL Monitoring4 69
AFL Monitoring5 3.45 61

AFL Monitoring6	3.64	.52
AFL Scaffolding1	3.60	.51
AFL Scaffolding2	3.73	.46
AFL Scaffolding3	3.75	.44
AFL Scaffolding4	3.14	.90
AFL Scaffolding5	3.70	.49
AFL Scaffolding6	3.36	.71

In Table 2 below, Cronbach's Alpha (.85)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of.01).

Table 2
Item-Total Statistics forTeacher's Survey - Traditional and Alternative Assessments, AFL Scale Mean if Item Deleted Cronbach's Alpha if Item Deleted

| Paper pencil 137.04 | .85 |
| :--- | :--- | :--- |

Create own 137.00 . 86
Tests provided by curriculum

138.25 86
True/false 137.74 85
Multiple choice 137.52 85
Fill in the blank 137.45 85
Short answer 137.24 85
Essay 138.48 85
Means \& SD 137.50 85
Reliability Traditional
Assessment 137.23 85
Item analyses 137.06 85
Paper pencil importance 136.75 85
Create own importance 136.58 85
Tests provided by 137.51 85
curriculum importance 137.00 85
Multiple choice 136.80 85
importance
136.90 85
Completion importance 136.76 85
Essay importance 137.35 85
Means \& SD importance 136.93 85

Reliability Traditional Assessment importance	136.71	. 85
Item analyses importance	136.60	. 85
Alternative Assessment	137.61	. 85
Create performance and portfolio	137.33	. 85
Performance and Portfolio by curriculum	138.01	. 85
Informal observations \& questions	136.89	. 85
Portfolios	137.83	. 85
Exhibitions/presentations /recitals	137.76	. 85
Performance Assessment	137.34	. 85
Reliability Alternative Assessment	137.06	. 85
Alternative Assessment importance	136.64	. 85
Create Performance and Portfolio importance	136.80	. 85
Performance and Portfolio by curriculum importance	137.37	. 85
Informal observations \& questions importance	136.52	. 85
Portfolios importance	137.02	. 85
Exhibitions/presentations /recitals importance	136.96	. 85
Performance Assessment importance	136.74	. 85
Reliability Alternative Assessment importance	136.64	. 85
AFL Monitoring1	136.19	. 85
AFL Monitoring2	136.29	. 85
AFL Monitoring3	136.54	. 85
AFL Monitoring4	136.46	. 85
AFL Monitoring5	136.30	. 85
AFL Monitoring6	136.12	. 85
AFL Scaffolding1	136.16	. 85
AFL Scaffolding2	136.03	. 85
AFL Scaffolding3	136.01	. 85
AFL Scaffolding4	136.62	. 85
AFL Scaffolding5	136.06	. 85
AFL Scaffolding6	136.40	. 85

Scale: Teacher's Survey - Ethical Assessment Practices.

There were 679 responses of which 77 were excluded due to missing values on the 6 items of the Teacher's Survey - Ethical Assessment Practices scale (mean $=3.67$, standard deviation $=.96$), leaving a final $\mathrm{N}=602$ valid responses. Cronbach Alpha's coefficient for the 6 items was .28 .

Item statistics for the Teacher's Survey - Ethical Assessment Practices scale are stated in Table 3 below for mean and standard deviation. The lowest mean was for giving a student a failing grade if he misses the final exam, suggesting that teachers had the least agreement on this item (mean=.04). The highest mean was for stating how the task will be graded, suggesting that teachers had the most agreement on this item (mean=.96).

Table 3
Item Statistics for Teacher's Survey - Ethical Assessment Practices

	Mean	Std. Deviation
Ethical practices1	.96	.19
Ethical practices2	.04	.19
Ethical practices3	.84	.37
Ethical practices4	.67	.47
Ethical practices5	.92	.28
Ethical practices6	.25	.44

In Table 4 below, Cronbach's Alpha (.28)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of .01).

Table 4
Item-Total Statistics for Teacher's Survey - Ethical Assessment Practices

Scale Mean if Item Deleted Cronbach's Alpha if Item Deleted

Ethical practices1	2.70	.29
Ethical practices2	3.63	.28
Ethical practices3	2.83	.23
Ethical practices4	3.00	.21
Ethical practices5	2.75	.21
Ethical practices6	3.42	.22

Scale: Teacher's Survey - Preparation and Training.

There were 679 responses of which 28 were excluded due to missing values on the 3 items of the Teacher's Survey - Preparation and Training scale (mean $=7.54$, standard deviation $=2.35$), leaving a final $\mathrm{N}=651$ valid responses. Cronbach Alpha's coefficient for the 3 items was . 37.

Item statistics for the Teacher's Survey - Preparation and Training scale are stated in Table 5 below for mean and standard deviation. The lowest mean was for attending training within the last 3 years, suggesting that teachers had the least agreement on this item (mean=.70). The highest mean was for describing current level of preparation in student assessment, suggesting that teachers had the most agreement on this item (mean=3.60).

Table 5
Item Statistics for Teacher's Survey - Preparation and Training

	Mean	$\%$	Std. Deviation
Preparation \& Training1 (0-4)	3.25	81	1.10
Preparation \& Training2 (0-1)	.70	70	.46
Preparation \& Training3 (0-4)	3.60	90	.58

In Table 6 below, Cronbach's Alpha (.37)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of .08).

Table 6

Item-Total Statistics for Teacher's Survey - Preparation and Training

Scale Mean if Item Deleted Cronbach's Alpha if Item Deleted

Preparation \& Training1	4.30	.28
Preparation \& Training2	6.85	.45
Preparation \& Training3	3.95	.07

Scale: Teacher's Survey - Involvement in Student Assessment.
There were 679 responses of which 38 were excluded due to missing values on the 4 items of the Teacher's Survey - Involvement in Student Assessment scale (mean = 7.31, standard deviation $=4.17$), leaving a final $\mathrm{N}=641$ valid responses. Cronbach Alpha's coefficient for the 4 items was .86 , suggesting that the items have high internal consistency.

Item statistics for the Teacher's Survey - Involvement in Student Assessment scale are stated below in Table 7 for mean and standard deviation. The lowest mean was for being involved in setting assessment policy for the school, suggesting that teachers had the least agreement on this item (mean=1.40). The highest mean was for participating in program review, curricular evaluation, or planning activities using student assessment, suggesting that teachers had the most agreement on this item (mean=2.16).

Table 7
Item Statistics for Teacher's Survey - Involvement in Student Assessment

	Mean	Std. Deviation
Involvment1	2.12	1.15
Involvment2	2.16	1.21
Involvment3	1.64	1.30
Involvment4	1.40	1.29

In Table 8 below, Cronbach's Alpha (.86) was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because none of them would produce an increase.

Table 8
Item-Total Statistics for Teacher's Survey - Involvement in Student Assessment

Scale Mean if Item Deleted Cronbach's Alpha if Item
 Deleted

Involvment1	5.19	.84
Involvment2	5.15	.83
Involvment3	5.67	.82
Involvment4	5.92	.82

Scale: Teacher's Survey - Impact.

There were 679 responses of which 97 were excluded due to missing values on the 5 items of the Teacher's Survey - Impact scale (mean $=18.86$, standard deviation $=2.29$), leaving a final $\mathrm{N}=582$ valid responses. Cronbach Alpha's coefficient for the 5 items was .83 , suggesting that the items have high internal consistency.

Item statistics for the Teacher's Survey - Impact scale are stated below in Table 9 for mean and standard deviation. The lowest mean was for the impact that student assessment has on resource allocation, suggesting that teachers had the least agreement on this item (mean=3.06).

The highest mean was for the impact student assessment has on changing instructional or teaching methods, suggesting that teachers had the most agreement on this item (mean=3.25).

Table 9
Item Statistics for Teacher's Survey - Impact
Mean Std. Deviation

Impact1	3.25	.57
Impact2	3.20	.52
Impact3	3.16	.55
Impact4	3.06	.60
Impact5	3.19	.70

In table 10 below, Cronbach's Alpha (.83)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of .02).

Table 10
Item-Total Statistics for Teacher's Survey - Impact

	Scale Mean if Item Deleted	Cronbach's Alpha if Item Deleted
Impact1	12.61	.79
Impact2	12.66	.80
Impact3	12.70	.77
Impact4	12.80	.78
Impact5	12.67	.85

Spearman-Brown.

Spearman-Brown is used to project subscale reliabilities to full scale reliabilities. It was obtained to understand the internal consistency reliability for all the subscales after adjusting to the largest number of items, which are 51 in this complete scale.

Table 11

Spearman-Brown for Teacher's Survey Subscales			
Scale	Cronbach Alpha	\# of Items	Spearman- Brown (51)
Teacher's Survey - Ethical Assessment Practices	.28	6	.77
Teacher's Survey - Preparation and Training	.37	3	.91
Teacher's Survey - Involvement in Student	.86	4	.99
Assessment Teacher's Survey - Impact	.83	5	.98

Administrator's Survey.

Scale: Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes.
There were 89 responses of which 14 were excluded due to missing values on the 32 items of the Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes scale $($ mean $=97.90$, standard deviation $=13.40)$, leaving a final $\mathrm{N}=74$ valid responses. Cronbach Alpha's coefficient for the 32 items was .91 , suggesting that the items have high internal consistency.

Item statistics for the Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes scale are stated below in Table 12 for mean and standard deviation. The lowest mean was for using commercial instruments or test, suggesting that teachers had the least agreement on this item (mean=1.54). The highest mean was for expecting teachers to use student assessment information to modify how and what to teach, suggesting that teachers had the most agreement on this item (mean=3.55).

Table 12
Item Statistics for Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes
Std. Deviation
Content Basic Skills
3.27
.71
Content Cognitive Development
3.15
.70
Content Affective Development
3.11
. 90
Content Social Development 2.60 1.07
Content Vocational 2.27 1.14
Content Student Satisfaction 3.19 77
Methods School developed 3.08 95
Methods Commercial 1.54 1.05
Methods Student performance 3.03 92
Mission Assessment 3.42 64
Mission Outcomes 3.41 64
Mission Interdisciplinary 2.97 86
Mission Alternative Delivery 2.62 87
Mission Innovation 2.93 93
Policies Dissemination 89 3.08
Policies Feedback 73 3.46
Policies Workshops 67
Policies Support 70
Policies Hiring 78
Policies Planning 61
Policies Review 64
Policies Evaluation 70
Attitudes 1 1.19
Attitudes2 91
Attitudes 3 86
Attitudes4 71
Attitudes5 70
Attitudes6 88
Attitudes7 74
Attitudes8 62
Attitudes9 64
Attitudes 10 78

In Table 13 below, Cronbach's Alpha (.91)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of .01).

Table 13
Item-Total Statistics for Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes

Scale Mean if Item Deleted Cronbach's Alpha if Item
 Deleted

Content Basic Skills 94.62 .91

Content Cognitive Development 94.74 . 90
Content Affective Development 94.78 . 90
Content Social Development 95.30 90
Content Vocational 95.62 90
Content Student Satisfaction 94.70 90
Methods School developed 94.81 91
Methods Commercial 96.35 91
Methods Student performance 94.86 90
Mission Assessment 94.47 91
Mission Outcomes 94.49 90
Mission Interdisciplinary 94.92 90
Mission Alternative Delivery 95.27 90
Mission Innovation 94.96 90
Policies Dissemination 94.81 91
Policies Feedback 94.43 90
Policies Workshops 94.55 90
Policies Support 94.58 91
Policies Hiring 95.10 91
Policies Planning 94.60 91
Policies Review 94.47 90
Policies Evaluation 94.47 90
Attitudes1 95.82 92
Attitudes2 94.96 90
Attitudes3 94.80 90
Attitudes 4 94.53 90
Attitudes5 94.73 91
Attitudes6 95.00 90
Attitudes7 94.49 91
Attitudes8 94.34 91
Attitudes9 94.47 90
Attitudes10 94.57 90

Scale: Administrator's Survey - Ethical Assessment Practices.

There were 89 responses of which 10 were excluded due to missing values on the 6 items of the Administrator's Survey - Ethical Assessment Practices scale (mean $=3.47$, standard deviation $=.90$), leaving a final $\mathrm{N}=79$ valid responses. Cronbach Alpha's coefficient for the 6 items was . 14 .

Item statistics for the Administrator's Survey - Ethical Assessment Practices scale are stated below in Table 14 for mean and standard deviation. The lowest mean was for teachers giving an F for the course because the student missed the final exam, suggesting that teachers
had the least agreement on this item (mean=0.05). The highest mean was for stating how the task will be graded, suggesting that teachers had the most agreement on this item (mean=1.00).

Table 14
Item Statistics for Administrator's Survey - Ethical Assessment Practices
Mean
Std. Deviation

Ethical Practices1	1.00	.00
Ethical Practices2	.05	.22
Ethical Practices3	.75	.44
Ethical Practices4	.62	.49
Ethical Practices5	.89	.32
Ethical Practices6	.16	.37

In Table 15 below, Cronbach's Alpha (.14) was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because the increase would be minimal (maximum increase of .19).

Table 15
Item-Total Statistics for Administrator's Survey - Ethical Assessment Practices Deleted

Ethical Practices1	2.47	.15
Ethical Practices2	3.42	.33
Ethical Practices3	2.72	.10
Ethical Practices4	2.85	-.21
Ethical Practices5	2.58	.07
Ethical Practices6	3.30	.13

Scale: Administrator's Survey - Preparation and Training.

There were 89 responses of which 6 were excluded due to missing values on the 6 items of the Administrator's Survey - Preparation and Training scale (mean $=7.84$, standard deviation $=1.13$), leaving a final $\mathrm{N}=83$ valid responses. Cronbach's Alpha's coefficient for the 3 items was (-.02).

Item statistics for the Administrator's Survey - Preparation and Training scale are stated below in Table 16 for mean and standard deviation. The lowest mean was for attending training within the last 3 years, suggesting that teachers had the least agreement on this item (mean $=$ 0.72). The highest mean was for describing current level of preparation in student assessment, suggesting that teachers had the most agreement on this item (mean $=3.77$).

Table 16
Item Statistics for Administrator's Survey - Preparation and Training

	Mean	$\%$	Std. Deviation
Preparation \& training1 (0-4)	3.35	83	.94
Preparation \& training2 (0-1)	.72	72	.45
Preparation \& training3 (0-4)	3.77	94	.45

In Table 17 below, Cronbach's Alpha (-.02)was adjusted when an item was deleted. It appeared that deleting the item Preparation \&Training1 increased Cronbach Alpha’s coefficient to .19 .

Table 17
Item-Total Statistics for Administrator's Survey - Preparation and Training Scale Mean if Item Deleted Cronbach's Alpha if Item Deleted

Preparation \& Training1	4.50	.19
Preparation \& Training2	7.12	.12
Preparation \& Training3	4.07	-.25

Item Statistics and Item-Total Statistic were computed a second time, eliminating the first item Preparation \& Training 1 in order to increase the Cronbach Alpha's coefficient. The new Cronbach Alpha became . 19 .

Scale: Administrator's Survey - Involvement in Student Assessment.

There were 89 responses of which 0 were excluded due to missing values on the 4 items of the Administrator's Survey - Involvement in Student Assessment scale (mean =9.64, standard deviation $=4.46$), leaving a final $\mathrm{N}=89$ valid responses. Cronbach Alpha's coefficient for the 4 items was .86 , suggesting that the items have high internal consistency.

Item statistics for the Administrator's Survey - Involvement in Student Assessment scale are stated below in Table 18 for mean and standard deviation. The lowest mean was for administrators serving on school-wide committee on student assessment, suggesting that administrators had the least agreement on this item (mean=2.28). The highest mean was for administrators participating in program review, curricular evaluation or planning activities using student assessment results, suggesting that teachers had the most agreement on this item (mean=2.64)

Table 18
Item Statistics for Administrator's Survey - Involvement in Student Assessment

	Mean	Std. Deviation
Involvment1	2.37	1.25
Involvment2	2.64	1.33
Involvment3	2.28	1.35
Involvment4	2.35	1.37

In Table 19 below, Cronbach's Alpha (.86)was adjusted when an item was deleted. None of the items appeared to be a candidate for deletion because none would increase the coefficient's value.

Table 19
Item-Total Statistics for Administrator's Survey - Involvement in Student Assessment

	Scale Mean if Item Deleted	Cronbach's Alpha if Item Deleted
Involvment1	7.27	.84
Involvment2	7.01	.80
Involvment3	7.36	.83
Involvment4	7.30	.83

Scale: Administrator's Survey - Impact.

There were 89 responses of which 6 were excluded due to missing values on the 5 items of the Administrator's Survey - Impact scale (mean $=16.72$, standard deviation $=2.64$), leaving a final $\mathrm{N}=83$ valid responses. Cronbach Alpha's coefficient for the 5 items was .14 .

Item statistics for the Administrator's Survey - Impact scale are stated below in Table 20 for mean and standard deviation. The lowest mean was for hiring specialists, suggesting that administrators had the least agreement on this item (mean=3.16). The highest mean was for changing instructional or teaching methods, suggesting that administrators had the most agreement on this item (mean=3.62).

Table 20
Item Statistics for Administrator's Survey - Impact

	Mean	Std. Deviation
Impact1	3.62	2.21
Impact2	3.37	.49
Impact3	3.40	.56
Impact4	3.18	.52
Impact5	3.16	.69

In Table 21 below, Cronbach's Alpha (.14) was adjusted when an item was deleted. It appeared that Impact 1 was a candidate for deletion because the increase in Cronbach Alpha's coefficient would be considerable (from . 14 to .69).

Table 21
Item-Total Statistics Administrator's Survey - Impact

	Scale Mean if Item Deleted	Cronbach's Alpha if Item Deleted
Impact1	13.11	.69
Impact2	13.35	.04
Impact3	13.33	-.05
Impact4	13.54	.07
Impact5	13.57	.13

Item Statistics and Item-Total Statistic were computed a second time, eliminating the first item Impact 1 in order to increase the Cronbach Alpha coefficient. The new Cronbach Alpha became 69 .

Spearman-Brown.

Spearman-Brown coefficient was obtained to understand the internal consistency reliability for all the subscales after adjusting to the largest number of items.

Table 22

Scale	Cronbach Alpha	\# of Items	Spearman- Brown (32)
Administrator's Survey - Ethical Assessment Practices	. 14	6	0.47
Administrator's Survey - Preparation and Training	. 19	2	0.79
Administrator's Survey - Involvement in Student Assessment	. 86	4	0.95
Administrator's Survey - Impact	. 69	4	0.95

Frequencies

Participants' Gender.

Figure 1. Teachers by gender

Figure 2. Administrators by gender

Participants’ Age.

Table 23
Age for Teachers and Administrators

	Valid	Missing	Mean
Teachers	628	51	32.48
Administrators	87	2	40.48

Participants by Districts.

Figure 3. Teachers by Districts

Figure 4. Administrators by Districts

Participants' Educational Level.

Figure 5. Teachers' Educational Level

Figure 6. Administrators' Educational Level

Teachers' Teaching Level.

Figure 7. Teachers' Teaching Level

Teachers' Assignment.

Figure 8. Teachers ' Assignment

Administrators' Positions.

Figure 9. Administrators' Positions

Years of Teaching.

Table 24
Years of Teaching Experience

	Valid N	Missing N	Mean
Teachers	671	8	9.48
Administrators	86	3	14.17

Administrative Experience.
Table 25
Years of Administrative Experience

	Valid N	Missing N	Mean
Administrators	83	6	8.18

Descriptive Statistics for Teacher's Survey

Teacher's Survey - Traditional and Alternative Assessments, AFL.

Table 26
Descriptive Statisticsfor Teacher's Survey - Traditional and Alternative Assessments, AFL
N Mean Std. Deviation

Paper pencil	671	2.69	.94
Create own	666	2.70	1.07
Tests by curriculum	657	1.49	1.04
True/false	665	1.99	1.11
Multiple choice	667	2.21	1.10
Fill in the blank	663	2.26	1.11
Short answer	666	2.53	.99
Essay	649	1.23	1.25
Means \& SD	618	2.21	1.38
Reliability Traditional Assessment	620	2.50	1.27
Item analyses	634	2.66	1.22
Paper pencil importance	664	3.02	.73
Create own importance	670	3.20	.75
Tests by curriculum importance	660	2.22	.89
True/false importance	668	2.74	.86
Multiple choice importance	669	2.95	.77
Completion importance	662	2.85	.83

Short answer importance	667	3.00	.80
Essay importance	628	2.38	1.20
Means \& SD importance	607	2.87	.95
Reliability Traditional Assessment importance	611	3.06	.85
Item analyses importance	621	3.19	.80
Alternative Assessment	658	2.10	.93
Create own	652	2.33	1.07
Performance \& Portfolio by curriculum	647	1.68	1.00
Informal Observation \& Questions	646	2.82	1.00
Portfolios	626	1.85	1.21
Exhibitions/Presentations/Recitals	646	1.91	1.57
Performance Assessment	644	2.36	1.14
Reliability Alternative Assessment	633	2.64	1.09
Alternative Assessment importance	662	3.09	.70
Create own importance	650	2.97	.73
Performance \& Portfolio importance by curriculum	644	2.33	1.18
Informal Observation \& Questions importance	651	3.22	.74
Portfolios importance	625	2.74	.91
Exhibitions/Presentations/Recitals importance	646	2.80	.89
Performance Assessment importance	646	3.02	.79
Reliability Alternative Assessment importance	632	3.12	.72
AFL Monitoring1	667	3.57	.54
AFL Monitoring2	668	3.44	.73
AFL Monitoring3	665	3.19	.73
AFL Monitoring4	666	3.27	.69
AFL Monitoring5	668	3.45	.63
AFL Monitoring6	669	3.64	.53
AFL Scaffolding1	673	3.60	.51
AFL Scaffolding2	672	3.73	.46
AFL Scaffolding3	673	3.74	.45
AFL Scaffolding4	670	3.16	.88
AFL Scaffolding5	672	3.67	.50
AFL Scaffolding6	669	3.34	.71

Table 27
Paper pencil

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid				1.3	
	Never	9	1.3	1.3	11.3
	Not very often	67	9.9	10.0	37.7
	Half the time	177	26.1	26.4	80.3
	Most of the time	286	42.1	42.6	100.0
Always	132	19.4	19.7		
	Total	671	98.8	100.0	
	System	8	1.2		

Total

Table 28
Create own

		Frequency	Percent	Valid Percent	Cumulative Percent
	Never	18	2.7	2.7	2.7
	Not very often	89	13.1	13.4	16.1
Valid	Half the time	132	19.4	19.8	35.9
	Most of the time	261	38.4	39.2	75.1
	Always	166	24.4	24.9	100.0
	Total	666	98.1	100.0	
Missing	System	13	1.9		
Total		679	100.0		

Table 29
Tests provided by curriculum

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	102	15.0	15.5	15.5
	Not very	283	41.7	43.1	58.6
	often			21.8	80.4
	Half the time	143	21.1	16.3	96.7
	Most of the	107	15.8	3.3	100.0
	time		32	3.2	100.0
	Always	Total	657	96.8	
Missing	System	22	3.2		

Table 30
Truelfalse

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Never	46	6.8	6.9	6.9	
	Not very often	Half the time	210	30.9	31.6	
	Most of the time	179	26.4	26.9	38.5	
	Always	163	24.0	24.5	65.4	
Total	67	9.9	10.1	89.9		
Missing	System	665	97.9	100.0	100.0	
Total		14	2.1			

Table 31
Multiple choice

	Frequency	Percent	Valid Percent	Cumulative Percent	
				4.5	
	Never	30	4.4	4.5	30.0
	Not very often	170	25.0	25.5	57.0
Valid	Half the time	180	26.5	27.0	87.3
	Most of the time	202	29.7	30.3	100.0
	Always	85	12.5	12.7	
	Total	667	98.2	100.0	
Missing	System	12	1.8		
Total		679	100.0		

Table 32
Fill in the blank

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	39	5.7	5.9	5.9
	Not very often	135	19.9	20.4	26.2
Valid	Half the time	194	28.6	29.3	55.5
	Most of the time	205	30.2	30.9	86.4
	Always	90	13.3	13.6	100.0
	Total	663	97.6	100.0	
Missing	System	16	2.4		
Total		679	100.0		

Table 33
Short answer

	Frequency	Percent	Valid Percent	Cumulative Percent	
				3.0	3.0
	Never	20	2.9	13.2	16.2
	Not very often	88	13.0	26.7	42.9
Valid	Half the time	178	26.2	42.3	85.3
	Most of the time	282	41.5	14.7	100.0
	Always	98	14.4	100.0	
	Total	666	98.1		
Missing	System	13	1.9		
Total		679	100.0		

Table 34
Essay

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	241	35.5	37.1	37.1
	Not very often	188	27.7	29.0	66.1
	Molf the time	89	13.1	13.7	79.8
	Mlways	94	13.8	14.5	94.3
	Total	37	5.4	5.7	100.0
Missing	System	649	95.6	100.0	
Total		30	4.4		

Table 35
Means \& SD

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	100	14.7	16.2	16.2
	Not very often	109	16.1	17.6	33.8
	Half the time	96	14.1	15.5	49.4
	Most of the time	189	27.8	30.6	79.9
	Always	124	18.3	20.1	100.0
Missing	Total	System	618	91.0	100.0
Total	61	9.0			

Table 36
Reliability Traditional Assessment

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid				11.5	11.5
	Never	71	10.5	10.8	22.3
	Not very often	67	9.9	16.9	39.2
	Most of the time	105	15.5	38.2	77.4
	Always	237	34.9	22.6	100.0
Missing	Total	140	20.6	100.0	
Total	System	620	91.3		

Table 37
Item analyses

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	52	7.7	8.2	8.2
	Not very often	71	10.5	11.2	19.4
Valid	Half the time	95	14.0	15.0	34.4
	Most of the time	241	35.5	38.0	72.4
	Always	175	25.8	27.6	100.0
	Total	634	93.4	100.0	
Missing	System	45	6.6		
Total		679	100.0		

Table 38
Paper pencil importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not important	14	2.1	2.1	2.1
	Moderately	128	18.9	19.3	21.4
Valid	important	356	52.4	53.6	75.0
	Important	166	24.4	25.0	100.0
	Very important	664	97.8	100.0	
	Total	15	2.2		
Missing	System	679	100.0		
Total					

Table 39
Create own importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not at all important	2	.3	.3	.3
	Not important	8	1.2	1.2	1.5
	Moderately	10	14.9	15.1	16.6
	Important	101		45.4	61.9
	Very important	304	44.8	38.1	100.0
	Total	255	37.6	100.0	
Missing	System	670	98.7		
Total	9	1.3			

Table 40
Tests provided by curriculum importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not at all important	17	2.5	2.6	2.6
	Not important	103	15.2	15.6	18.2
	Moderately			46.4	64.5
Valid	important			45.1	28.2
	Important	186	27.4	7.3	92.7
	Very important	48	7.1	100.0	
	Total	660	97.2	100.0	
Missing	System	19	2.8		
Total		679	100.0		

Table 41
True/false importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not at all important	6	.9	.9	.9
	Not important	40	5.9	6.0	6.9
	Moderately	199	29.3	29.8	36.7
Valid	important	297	43.7	44.5	81.1
	Important	126	18.6	18.9	100.0
	Very important	668	98.4	100.0	
	Total	11	1.6		
Missing	System	679	100.0		
Total					

Table 42
Multiple choice importance

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not at all important	2	.3	.3	.3	
	Not important	Moderately	20	2.9	3.0	
	important	146	21.5	21.8	3.3	
	Important	344	50.7	51.4	25.1	
Very important	157	23.1	23.5	76.5		
Missing	Total	669	98.5	100.0	100.0	
Total		10	1.5			

Table 43
Completion importance

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not at all important	9	1.3	1.4	1.4	
	Not important	32	4.7	4.8	6.2	
	Moderately	important	137	20.2	20.7	
	Important	355	52.3	53.6	26.9	
Very important	129	19.0	19.5	80.5		
Missing	Total	System	17	97.5	100.0	
Total		2.5				

Table 44
Short answer importance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not at all important	7	1.0	1.0	1.0
	Not important	19	2.8	2.8	3.9
	Moderately important	117	17.2	17.5	21.4
	Important	350	51.5	52.5	73.9
	Very important	174	25.6	26.1	100.0
	Total	667	98.2	100.0	
Missing	System	12	1.8		
Total		679	100.0		

Table 45
Essay importance

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not at all important	67	9.9	10.7	10.7	
	Not important	66	9.7	10.5	21.2	
	Moderately	important	165	24.3	26.3	
	Important	221	32.5	35.2	47.5	
Very important	109	16.1	17.4	82.6		
Missing	Total	System	628	92.5	100.0	
Total		51	7.5			

Table 46
Means \& SD importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not at all important	15	2.2	2.5	2.5
	Not important	34	5.0	5.6	8.1
	Moderately			20.8	28.8
	important	126	18.6	44.6	73.5
	Important	271	39.9	26.5	100.0
	Very important	161	23.7	100.0	
Missing	Total	System	607	89.4	
Total	72	10.6			

Table 47
Reliability Traditional Assessment importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not at all important	8	1.2	1.3	1.3
	Not important	19	2.8	3.1	4.4
	Moderately	99	14.6	16.2	20.6
Valid	important	286	42.1	46.8	67.4
	Important	199	29.3	32.6	100.0
	Very important	611	90.0	100.0	
	Total	68	10.0		
Missing	System	679	100.0		
Total					

Table 48
Item analyses importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Nalid	Not at all important	3	.4	.5	.5
	Not important	19	2.8	3.1	3.5
	Moderately			11.9	15.5
	important	74	10.9	46.4	
	Important	288	42.4	38.2	100.0
	Very important	237	34.9	100.0	
Missing	Total	System	621	91.5	
Total		68	8.5		

Table 49
Alternative Assessment

	Frequency	Percent	Valid Percent	Cumulative Percent	
				3.3	
	Never	22	3.2	3.3	26.7
	Not very often	154	22.7	23.4	65.8
Valid	Half the time	257	37.8	39.1	94.5
	Most of the time	189	27.8	28.7	100.0
	Always	36	5.3	5.5	
	Total	658	96.9	100.0	
Missing	System	21	3.1		
Total		679	100.0		

Table 50
Create Performance and Portfolio

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	33	4.9	5.1	5.1
	Not very often	126	18.6	19.3	24.4
Valid	Half the time	162	23.9	24.8	49.2
	Most of the time	255	37.6	39.1	88.3
	Always	76	11.2	11.7	100.0
	Total	652	96.0	100.0	
Missing	System	27	4.0		
Total		679	100.0		

Table 51
Performance and Portfolio by curriculum

	Frequency	Percent	Valid Percent	Cumulative Percent	
					9.6
	Never	62	9.1	9.6	48.7
	Not very often	253	37.3	39.1	77.9
	Half the time	189	27.8	29.2	96.3
	Most of the time	119	17.5	18.4	100.0
	Always	24	3.5	3.7	
	Total	647	95.3	100.0	
Missing	System	32	4.7		
Total		679	100.0		

Table 52
Informal Observations and Questions

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	14	2.1	2.2	2.2
	Not very often	52	7.7	8.0	10.2
Valid	Half the time	149	21.9	23.1	33.3
	Most of the time	250	36.8	38.7	72.0
	Always	181	26.7	28.0	100.0
	Total	646	95.1	100.0	
Missing	System	33	4.9		
Total		679	100.0		

Table 53
Portfolios

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	94	13.8	15.0	15.0
	Not very often	172	25.3	27.5	42.5
	Half the time	152	22.4	24.3	66.8
	Most of the time	150	22.1	24.0	90.7
	Always	58	8.5	9.3	100.0
Missing	Total	System	626	92.2	100.0
Total		63	7.8		

Table 54
Exhibitions/Presentations/Recitals

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid				8.5	8.5
	Never	55	8.1	34.8	43.3
	Not very often	225	33.1	26.8	70.1
	Holf the time	173	25.5	20.9	91.0
	Always	135	19.9	8.8	99.8
	So.	57	8.4	.2	100.0
	Total	1	.1	100.0	
Missing	System	646	95.1		
Total	33	4.9			

Table 55
Performance Assessment

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Never	34	5.0	5.3	5.3
	Not very often	133	19.6	20.7	25.9
	Half the time	158	23.3	24.5	50.5
	Most of the time	208	30.6	32.3	82.8
	Always	111	16.3	17.2	100.0
	Total	644	94.8	100.0	
Missing	System	35	5.2		
Total		679	100.0		

Table 56
Reliability Alternative Assessment

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Never	37	5.4	5.8	5.8
	Not very often	60	8.8	9.5	15.3
	Half the time	127	18.7	20.1	35.4
	Most of the time	277	40.8	43.8	79.1
	Always	132	19.4	20.9	100.0
	Total	633	93.2	100.0	
Missing	System	46	6.8		
Total		679	100.0		

Table 57
Alternative Assessment importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not at all important	1	.1	.2	.2
	Not important	11	1.6	1.7	1.8
	Moderately			14.7	16.5
	important	97	14.3	55.7	72.2
	Important	369	54.3	27.8	100.0
	Very important	184	27.1	100.0	
Missing	Total	662	97.5		
Total		17	2.5		

Table 58
Create Performance and Portfolio importance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not at all important	2	. 3	. 3	. 3
	Not important	11	1.6	1.7	2.0
	Moderately important	138	20.3	21.2	23.2
	Important	352	51.8	54.2	77.4
	Very important	147	21.6	22.6	100.0
	Total	650	95.7	100.0	
Missing	System	29	4.3		
Total		679	100.0		

Table 59
Performance and Portfolio by curriculum importance

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not at all important	10	1.5	1.6	1.6	
	Not important	91	13.4	14.1	15.7	
	Moderately	important	281	41.4	43.6	
	Important				59.3	
	Very important	44	32.0	33.7	93.0	
23.00	1	6.5	6.8	99.8		
	Total	644	94.8	.2	100.0	
Missing	System	35	5.2	100.0		
Total		679	100.0			

Table 60
Informal Observations \& Questions importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not at all important	2	.3	.3	.3
	Not important	10	1.5	1.5	1.8
	Moderately	81	11.9	12.4	14.3
Valid	important	308	45.4	47.3	
	Important	250	36.8	38.4	100.0
	Very important	651	95.9	100.0	
	Total	28	4.1		
Missing	System	679	100.0		
Total					

Table 61
Portfolios importance

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Not at all important	13	1.9	2.1	2.1	
	Not important	41	6.0	6.6	8.6	
	Moderately	important	161	23.7	25.8	
	Important	293	43.2	46.9	34.4	
Very important	117	17.2	18.7	81.3		
Missing	Total	System	625	92.0	100.0	
Total		54	8.0			

Table 62
Exhibitions/Presentations/Recitals importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not at all important	8	1.2	1.2	1.2
	Not important	34	5.0	5.3	6.5
	Moderately	182	26.8	28.2	34.7
	important			43.2	77.9
	Important	279	41.1	22.1	100.0
	Very important	143	21.1	100.0	
Missing	Total	646	95.1		
Total	System	33	4.9		

Table 63
Performance Assessment importance

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not at all important	5	. 7	. 8	. 8
	Not important	20	2.9	3.1	3.9
	Moderately important	105	15.5	16.3	20.1
	Important	342	50.4	52.9	73.1
	Very important	174	25.6	26.9	100.0
	Total	646	95.1	100.0	
Missing	System	33	4.9		
Total		679	100.0		

Table 64
Reliability Alternative Assessment importance

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not at all important	2	.3	.3	.3
	Not important	Moderately	7	1.0	1.1

Table 65
AFL Monitoring1

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Neutral	16	2.4	2.4	2.4
Valid	Agree	252	37.1	37.8	40.2
	Strongly Agree	399	58.8	59.8	100.0
	Total	667	98.2	100.0	
Missing	System	12	1.8		
Total		679	100.0		

Table 66
AFL Monitoring2

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Strongly disagree				.4
	Disagree	11	.4	.4	2.1
Valid	Neutral	43	1.6	6.3	1.6
	Agree	241	35.5	6.4	8.5
	Strongly Agree	370	54.5	36.1	44.6
	Total	668	98.4	55.4	100.0
Missing	System	11	1.6	100.0	
Total		679	100.0		

Table 67
AFL Monitoring3

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.5
	Disagree	10	1.5	1.5	15.8
	Neutral	95	14.0	14.3	64.1
	Agree	321	47.3	48.3	100.0
	Strongly Agree	239	35.2	35.9	
	Total	665	97.9	100.0	
Missing	System	14	2.1		
Total		679	100.0		

Table 68
AFL Monitoring4

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Disagree	8	1.2	1.2	1.2
	Neutral	70	10.3	10.5	11.7
Valid	Agree	319	47.0	47.9	59.6
	Strongly Agree	269	39.6	40.4	100.0
	Total	666	98.1	100.0	
Missing	System	13	1.9		
Total		679	100.0		

Table 69
AFL Monitoring5

	Frequency	Percent	Valid Percent	Cumulative Percent	
					.9
Valid	Disagree	6	.9	4.5	5.4
	Agree	30	4.4	43.6	49.0
	Strongly Agree	291	42.9	51.0	100.0
	Total	341	50.2	100.0	
Missing	System	668	98.4		
Total		11	1.6		

Table 70
AFL Monitoring6

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Disagree	1	.1	.1	.1
	Neutral	15	2.2	2.2	2.4
Valid	Agree	210	30.9	31.4	33.8
	Strongly Agree	443	65.2	66.2	100.0
	Total	669	98.5	100.0	
Missing	System	10	1.5		
Total		679	100.0		

Table 71
AFL Scaffolding1

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Disagree	1	.1	.1	.1
	Neutral	5	.7	.7	.9
Valid	Agree	259	38.1	38.5	39.4
	Strongly Agree	408	60.1	60.6	100.0
	Total	673	99.1	100.0	
Missing	System	6	.9		
Total		679	100.0		

Table 72
AFL Scaffolding2

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Disagree	1	.1	.1	.1
Valid	Neutral	Agree	2	.3	.3
	Strongly Agree	172	25.3	25.6	.4
	Total	497	73.2	74.0	26.0
Missing	System	672	99.0	100.0	100.0
Total		7	1.0		

Table 73
AFL Scaffolding3

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Neutral	3	.4	.4	.4
Valid	Agree	172	25.3	25.6	26.0
	Strongly Agree	498	73.3	74.0	100.0
	Total	673	99.1	100.0	
Missing	System	6	.9		
Total		679	100.0		

Table 74
AFL Scaffolding4

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Strongly disagree	5	.7	.7	.7	
	Disagree	Neutral	25	3.7	3.7	
	Agree	111	16.3	16.6	4.5	
	Strongly Agree	249	36.7	37.2	21.0	
Total	280	41.2	41.8	58.2		
Missing	System	670	98.7	100.0	100.0	
Total		9	1.3			

Table 75
AFL Scaffolding5

	Frequency	Percent	Valid Percent	Cumulative Percent		
	Disagree	1	.1	.1	.1	
Valid	Neutral	Agree	7	1.0	1.0	
	Strongly Agree	203	29.9	30.2	1.2	
	Total	461	67.9	68.6	100.4	
System	672	99.0	100.0			
Total		7	1.0			

Table 76
AFL Scaffolding6

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Strongly disagree	1	.1	.1	.1	
	Disagree	Neutral	7	1.0	1.0	
	Agree	67	9.9	10.0	1.2	
	Strongly Agree	283	41.7	42.3	11.2	
Total	311	45.8	46.5	53.5		
Missing	System	669	98.5	100.0	100.0	
Total		10	1.5			

Teacher's Survey - Ethical Assessment Practices.
Table 77
Descriptive Statisticsfor Teacher's Survey - Ethical Assessment Practices

	Valid N	Mean	Std. Deviation
Ethical Practices1	654	.97	.18
Ethical Practices2	661	.04	.19
Ethical Practices3	638	.84	.37
Ethical Practices4	649	.66	.47
Ethical Practices5	659	.91	.29
Ethical Practices6	660	.24	.44

Table 78
Teachers' Ethical Practices1

		Frequency	Percent	Valid Percent	Cumulative Percent
	Unethical	22	3.2	3.4	3.4
Valid	Ethical	632	93.1	96.6	100.0
	Total	654	96.3	100.0	
Missing	System	25	3.7		
Total		679	100.0		

Table 79
Teachers' Ethical Practices2

		Frequency	Percent	Valid Percent	Cumulative Percent	
					96.4	
Valid	Unethical	637	93.8	96.4	100.0	
	Ethical	24	3.5	3.6		
Missing	Total	System	661	97.3	100.0	
Total		18	2.7			

Table 80
Teachers' Ethical Practices3

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid				16.0
	Unethical	102	15.0	16.0
	536	78.9	84.0	100.0
Total	638	94.0	100.0	
Total	41	6.0		

Table 81
Teachers' Ethical Practices4

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Unethical 218 32.1 33.6 Ethical 431 63.5 66.4 Total 649 95.6 100.0 100.0 Missing System 30 4.4 Total 679 100.0				

Table 82
Teachers' Ethical Practices5

		Frequency	Percent	Valid Percent	Cumulative Percent	
					9.3	
Valid	Unethical	61	9.0	9.3	100.0	
	Ethical	598	88.1	90.7		
Missing	Total	System	659	97.1	100.0	
Total		20	2.9			

Table 83
Teachers' Ethical Practices6

		Frequency	Percent	Valid Percent	Cumulative Percent
					76.4
Valid	Unethical	Ethical	504	74.2	76.5
	Total	155	22.8	23.5	100.0
Missing	System	660	97.2	100.0	
Total		20	2.9		

Teacher's Survey - Preparation \& Training.

Table 84
Descriptive Statistics for Teacher's Survey - Preparation \& Training

	N	Mean	Std. Deviation
Preparation \& Training1	656	3.25	1.11
Preparation \& Training2	662	.70	.46
Preparation \& Training3	662	3.60	.58

Table 85
Teachers' Preparation \& Training1

		Frequency	Percent	Valid Percent	Cumulative Percent
	Not at all prepared	39	5.7	5.9	5.9
	Not very prepared	24	3.5	3.7	9.6
Valid	Slightly prepared	36	5.3	5.5	15.1
	Somewhat prepared	194	28.6	29.6	44.7
	Well prepared	363	53.5	55.3	100.0
	Total	656	96.6	100.0	
Missing	System	23	3.4		
Total		679	100.0		

Table 86
Teachers' Preparation \& Training2

		Frequency	Percent	Valid Percent	Cumulative Percent
				30.1	
Valid	No	199	29.3	30.1	100.0
	Yes	463	68.2	69.9	
Missing	Total	662	97.5	100.0	
Total		17	2.5		

Table 87
Teachers' Preparation \& Training3

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid Not at all prepared$\quad 1$.1	.2	.2		
	Not very prepared	2	.3	.3	.5
	Slightly prepared	21	3.1	3.2	3.6
	Somewhat prepared	217	32.0	32.8	36.4
	Well prepared	421	62.0	63.6	100.0
	Total	662	97.5	100.0	
Missing	System	17	2.5		
Total		679	100.0		

Teacher's Survey - Involvement in Student Assessment.

Table 88
Descriptive Statistics for Teacher's Survey - Involvement in Student Assessment

	N	Mean	Std. Deviation	
Involvment1	662	2.14	1.15	
Involvment2	656	2.18	1.22	
Involvment3	647	1.64	1.30	
Involvment4	652	1.40	1.30	

Table 89
Teacher's Involvement1

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not involved	Moderately involved	100	10.5	10.7
	Involved	14.7	15.1	10.7	
	Highly involved	239	35.2	36.1	25.8
	Very highly involved	170	25.0	25.7	61.9
	Total	82	12.1	12.4	100.0
	System	662	97.5	100.0	
Total		17	2.5		

Table 90
Teachers' Involvement2

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not involved				12.7
	Moderately involved	83	12.2	12.7	26.2
	Involved	89	13.1	13.6	58.8
	Highly involved	214	31.5	32.6	84.6
	Very highly involved	169	24.9	25.8	100.0
Missing	Total	101	14.9	15.4	
Tystem	656	96.6	100.0		

Table 91
Teachers' Involvement3

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not involved	180	26.5	27.8	27.8
	Moderately involved	99	14.6	15.3	43.1
Valid	Involved	197	29.0	30.4	73.6
	Highly involved	113	16.6	17.5	91.0
	Very highly involved	58	8.5	9.0	100.0
	Total	647	95.3	100.0	
Missing	System	32	4.7		
Total		679	100.0		

Table 92
Teachers' Involvement4

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not involved	230	33.9	35.3	35.3
	Moderately involved	120	17.7	18.4	53.7
	Involved	166	24.4	25.5	79.1
	Highly involved	83	12.2	12.7	91.9
	Very highly involved	53	7.8	8.1	100.0
Missing	Total	652	96.0	100.0	
Total		27	4.0		

Teacher's Survey - Impact.

Table 93
Descriptive Statisticsfor Teachers'Survey - Impact

| | N | Mean | Std. Deviation |
| :--- | ---: | :---: | ---: | :--- |
| Impact1 | 636 | 3.24 | .56 |
| Impact2 | 624 | 3.20 | .51 |
| Impact3 | 615 | 3.16 | .54 |
| Impact4 | 603 | 3.06 | .59 |
| Impact5 | 618 | 3.19 | .70 |

Table 94
Teachers' Impact1

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Negative	7	1.0	1.1	1.1
	None	21	3.1	3.3	4.4
Valid	Positive	419	61.7	65.9	70.3
	Very positive	189	27.8	29.7	100.0
	Total	636	93.7	100.0	
Missing	System	43	6.3		
Total		679	100.0		

Table 95
Teachers' Impact 2

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.0
	Negative	6	.9	1.0	3.4
Valid	None	15	2.2	2.4	76.0
	Positive	453	66.7	72.6	100.0
	Very positive	150	22.1	24.0	
Missing	Total	624	91.9	100.0	
Total		55	8.1		

Table 96
Teachers' Impact3

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Negative	3	.4	.5	.5
	None	40	5.9	6.5	7.0
Valid	Positive	429	63.2	69.8	76.7
	Very positive	143	21.1	23.3	100.0
	Total	615	90.6	100.0	
Missing	System	64	9.4		
Total		679	100.0		

Table 97
Teachers' Impact4

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Negative	3	.4	.5	.5
	None	80	11.8	13.3	13.8
Valid	Positive	398	58.6	66.0	79.8
	Very positive	122	18.0	20.2	100.0
	Total	603	88.8	100.0	
Missing	System	76	11.2		
Total		679	100.0		

Table 98
Teachers' Impact5

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Very Negative	4	.6	.6	.6
	Negative	4	.6	.6	1.3
Valid	None	69	10.2	11.2	12.5
	Positive	337	49.6	54.5	67.0
	Very positive	204	30.0	33.0	100.0
	Total	618	91.0	100.0	
Missing	System	61	9.0		
Total		679	100.0		

Teacher's Survey - Assessment Practices of Students with Learning Disabilities.

Table 99
Teacher's Survey - Assessment of Students with LD with peers

		Frequency	Percent	Valid Percent	Cumulative Percent	
					58.1	
Valid	No	385	56.7	58.3	100.0	
	Yes	276	40.6	41.8		
Missing	Total	661	97.3	100.0		
Total		18	2.7			

Table 100
Descriptive Statistics for Pull Out by Subjects- Teachers

	N	Mean	Std. Deviation	
Language Arts	328	2.96		1.23
Arabic	322	2.96	1.22	
Math	317	2.84	1.37	
Science	298	2.31	1.55	
Social studies	255	1.67	1.65	
Valid N	244			

Table 101
Language Arts- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	16	2.4	4.9	4.9
	Occasionally	44	6.5	13.4	18.3
	Half the time	26	3.8	7.9	26.2
	Most of the time	93	13.7	28.4	54.6
	All the time	149	21.9	45.4	100.0
Missing	Total	328	48.3	100.0	
Tystal		351	51.7		

Table 102
Arabic- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	15	2.2	4.7	4.7
	Occasionally	40	5.9	12.4	17.1
Valid	Half the time	34	5.0	10.6	27.6
	Most of the time	86	12.7	26.7	54.3
	All the time	147	21.6	45.7	100.0
	Total	322	47.4	100.0	
Missing	System	357	52.6		
Total		679	100.0		

Table 103
Math- Teachers

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Never	32	4.7	10.1	10.1
	Occasionally	36	5.3	11.4	21.5
	Half the time	26	3.8	8.2	29.7
	Most of the time	79	11.6	24.9	54.6
	All the time	144	21.2	45.4	100.0
	Total	317	46.7	100.0	
Missing	System	362	53.3		
Total		679	100.0		

Table 104
Science- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Never	56	8.2	18.8	18.8
	Occasionally	58	8.5	19.5	38.3
Valid	Half the time	20	2.9	6.7	45.0
	Most of the time	66	9.7	22.1	67.1
	All the time	98	14.4	32.9	100.0
	Total	298	43.9	100.0	
Missing	System	381	56.1		
Total		679	100.0		

Table 105
Social studies- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	99	14.6	38.8	38.8
	Occasionally	Half the time	42	6.2	16.5
	Most of the time	21	3.1	8.2	63.3
	All the time	30	4.4	11.8	75.3
	Total	63	9.3	24.7	100.0
Missing	System	255	37.6	100.0	
Total		424	62.4		

Teacher's Survey - Accommodations.

Table 106
Oral instructions- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid Yes	496	73.0	100.0		100.0
Does not Apply	183	27.0			
Total	679	100.0			

Table 107
Computer responses- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	122	18.0	100.0	100.0
Does not Apply	557	82.0		
Total	679	100.0		

Table 108
Small Group- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	351	51.7	100.0	100.0
Does not Apply	328	48.3		
Total	679	100.0		

Table 109
Alternate Site- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	362	53.3	100.0	100.0
Does not Apply	317	46.7		
Total	679	100.0		

Table 110
Test Preparation- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	437	64.4	100.0	100.0
Does not Apply	242	35.6		
Total	679	100.0		

Table 111
Large Print- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	475	70.0	100.0	100.0
Does not Apply	204	30.0		
Total	679	100.0		

Table 112
Verbal Responses- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	353	52.0	100.0	100.0
Does not Apply	326	48.0		
Total	679	100.0		

Table 113
Assistive Devices- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	140	20.6	100.0	100.0
Does not Apply	539	79.4		
Total	679	100.0		

Table 114
Seating- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid Yes	266	39.2	100.0		100.0
Does not Apply	413	60.8			
Total	679	100.0			

Table 115
Breaks- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	286	42.1	100.0	100.0
Does not Apply	393	57.9		
Total	679	100.0		

Table 116
Reduce per Page/Line- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	482	71.0	100.0	100.0
Does not Apply	197	29.0		
Total	679	100.0		

Table 117
Scribe- Teachers

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid Yes | 160 | 23.6 | 100.0 | 100.0 |
| Does not Apply | 519 | 76.4 | | |
| Total | 679 | 100.0 | | |

Table 118

Calculator- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	258	38.0	100.0	100.0
Does not Apply	421	62.0		
Total	679	100.0		

Table 119
Lighting- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	139	20.5	100.0	100.0
Does not Apply	540	79.5		
Total	679	100.0		

Table 120
Multiple Sessions- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	264	38.9	100.0	100.0
Does not Apply	415	61.1		
Total	679	100.0		

Table 121
Prompts- Teachers

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid Yes | 369 | 54.3 | 100.0 | 100.0 |
| Does not Apply | 310 | 45.7 | | |
| Total | 679 | 100.0 | | |

Table 122
Reader- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	337	49.6	100.0	100.0
Does not Apply	342	50.4		
Total	679	100.0		

Table 123
Tape Recorder- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	69	10.2	100.0	100.0
Does not Apply	610	89.8		
Total	679	100.0		

Table 124
Extended Time- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	534	78.6	100.0	100.0
Does not Apply	145	21.4		
Total	679	100.0		

Table 125
Distractions- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	421	62.0	100.0	100.0
Does not Apply	258	38.0		
Total	679	100.0		

Table 126

Different Order- Teachers

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	332	48.9	100.0	100.0
Does not Apply	347	51.1		
Total	679	100.0		

Descriptive Statistics from Administrators' Surveys

Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes.
Table 127
Descriptive Statisticsfor Administrator's Survey - Content, Methods, Mission, Policies, and Attitudes

	N	Mean	Std. Deviation
Content Basic Skills	87	3.26	.67
Content Cognitive Development	87	3.17	.69
Content Affective Development	87	3.14	.85
Content Social Development	87	2.62	1.01
Content Vocational	87	2.25	1.08
Content Student Satisfaction	87	3.17	.75
Methods School developed	88	3.13	.92
Methods Commercial	84	1.58	1.06
Methods Student performance	87	3.06	.92
Mission Assessment	88	3.47	.62
Mission Outcomes	88	3.42	.62
Mission Interdisciplinary	87	2.99	.86
Mission Alternative Delivery	87	2.67	.86
Mission Innovation	88	2.94	.90
Policies Dissemination	82	3.07	.89
Policies Feedback	87	3.46	.71
Policies Workshops	88	3.38	.67
Policies Support	88	3.35	.70
Policies Hiring	84	2.80	.77
Policies Planning	86	3.27	.62
Policies Review	88	3.43	.66
Policies Evaluation	87	3.45	.68
Attitudes1	86	2.07	1.21
Attitudes2	88	2.98	.88
Attitudes3	88	3.16	.83
Attitudes4	88	3.40	.70
Attitudes5	88	3.20	.73
Attitudes6	88	2.93	.85
Attitudes7	88	3.45	.73
Attitudes8	88	3.53	.66
Attitudes9	88	3.41	.76
Attitudes10	88	3.34	

Table 128
Content Basic Skills - Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Little	1	1.1	1.1	1.1
	Moderate	8	9.0	9.2	10.3
Valid	Strong	45	50.6	51.7	62.1
	Very strong	33	37.1	37.9	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 129
Content Cognitive Development- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Little				2.3
	Moderate	8	2.2	2.3	11.5
Valid	Strong	80	9.0	9.2	69.0
	Very strong	27	56.2	57.5	100.0
	Total	87	90.3	31.0	
Missing	System	2	2.2	100.0	
Total		89	100.0		

Table 130
Content Affective Development- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
	None	1	1.1	1.1	4.6
	Little	3	3.4	3.4	17.2
Valid	Moderate	1	12.4	12.6	63.2
	Strong	40	44.9	46.0	100.0
	Very strong	32	36.0	36.8	
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 131
Content Social Development- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	None	2	2.2	2.3	2.3
	Little	11	12.4	12.6	14.9
Valid	Moderate	22	24.7	25.3	40.2
	Strong	35	39.3	40.2	80.5
	Very strong	17	19.1	19.5	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 132
Content Vocational-Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	None	6	6.7	6.9	6.9
	Little	12	13.5	13.8	20.7
Valid	Moderate	35	39.3	40.2	60.9
	Strong	22	24.7	25.3	86.2
	Very strong	12	13.5	13.8	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 133
Content Student Satisfaction- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Little	1	1.1	1.1	1.1
	Moderate	15	16.9	17.2	18.4
Valid	Strong	39	43.8	44.8	63.2
	Very strong	32	36.0	36.8	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 134
Methods School Developed- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					3.4
	None	3	3.4	3.4	19.3
Valid	Moderate	Strong	14	15.7	15.9
	Very strong	37	41.6	42.0	61.4
	Total	34	38.2	38.6	100.0
Missing	System	88	98.9	100.0	
Total		1	1.1		

Table 135
Methods Commercial- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	None	16	18.0	19.0	19.0
	Little	21	23.6	25.0	44.0
Valid	Moderate	31	34.8	36.9	81.0
	Strong	14	15.7	16.7	97.6
	Very strong	2	2.2	2.4	100.0
	Total	84	94.4	100.0	
Missing	System	5	5.6		
Total		89	100.0		

Table 136
Methods Student Performance- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Little	7	7.9	8.0	8.0
	Moderate	13	14.6	14.9	23.0
Valid	Strong	35	39.3	40.2	63.2
	Very strong	32	36.0	36.8	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 137
Mission Assessment- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
	Low	1	1.1	1.1	4.5
Valid	Moderate	High	3	3.4	3.4
	Very high	38	42.7	43.2	47.7
	Total	46	51.7	52.3	100.0
Missing	System	88	98.9	100.0	
Total		1	1.1		

Table 138
Mission Outcomes- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					6.8
Valid	Moderate	6	6.7	6.8	51.1
	Hery high	39	43.8	44.3	100.0
	Total	43	48.3	48.9	
Missing	System	88	98.9	100.0	
Total		1	1.1		

Table 139
Mission Interdisciplinary- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
					1.1
	Very low	1	1.1	2.3	3.4
	Low	2	2.2	23.0	26.4
	Moderate	20	22.5	43.7	70.1
	High	38	42.7	29.9	100.0
	Very high	26	29.2	100.0	
Missing	Total	System	87	97.8	
Total		2	2.2		

Table 140
Mission Alternative Delivery- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Very low	1	1.1	1.1	1.1
	Low	4	4.5	4.6	5.7
Valid	Moderate	33	37.1	37.9	43.7
	High	34	38.2	39.1	82.8
	Very high	15	16.9	17.2	100.0
	Total	87	97.8	100.0	
Missing	System	2	2.2		
Total		89	100.0		

Table 141
Mission Innovation- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
	Very low	1	1.1	1.1	1.1
	Low	3	3.4	3.4	4.5
Valid	Moderate	23	25.8	26.1	30.7
	High	34	38.2	38.6	69.3
	Very high	27	30.3	30.7	100.0
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 142
Policies Dissemination- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not important	3	3.4	3.7	3.7
	Not very important	1	1.1	1.2	4.9
	Somewhat		9.0	9.8	14.6
	important	8	9.0	54.9	69.5
	Important	45	50.6	30.5	100.0
	Very Important	25	28.1	100.0	
Missing	Total	System	82	92.1	
Total		7	7.9		

Table 143
Policies Feedback- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Not very important	2	2.2	2.3	2.3
	Somewhat	important	5	5.6	5.7
	Important	31	34.8	35.6	8.0
	Very Important	49	55.1	56.3	43.7
	Total	87	97.8	100.0	100.0
Missing	System	2	2.2		
Total		89	100.0		

Table 144
Policies Workshops- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Somewhat				10.2
	important	9	10.1	10.2	52.3
	Important	37	41.6	42.0	100.0
	Very Important	42	47.2	47.7	
Missing	Total	88	98.9	100.0	
Total	System	1	1.1		

Table 145
Policies Support- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Somewhat				12.5
	important	11	12.4	12.5	52.3
	Important	35	39.3	39.8	100.0
	Very Important	42	47.2	47.7	
Missing	Total	88	98.9	100.0	
Total		1	1.1		

Table 146
Policies Hiring- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not very important	5	5.6	6.0	6.0
	Somewhat	20	22.5	23.8	29.8
Valid	important	46	51.7	54.8	84.5
	Important	13	14.6	15.5	100.0
	Very Important	84	94.4	100.0	
	Total	5	5.6		
Missing	System	89	100.0		
Total					

Table 147
Policies Planning- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Somewhat				9.3
	important	8	9.0	9.3	94.0
	Important	47	52.8	54.7	100.0
	Very Important	31	34.8	36.0	
Missing	Total	86	96.6	100.0	
Total	3	3.4			

Table 148
Policies Review- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Somewhat					
	important	Important		9.0	9.1	
	Very Important	46	38.2	38.6	9.1	
Total	System	88	98.9	52.3		
Total		1	1.1	100.0	100.0	

Table 149
Policies Evaluation- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Somewhat				10.3
	important	9	10.1	10.3	44.8
	Important	30	33.7	34.5	100.0
	Very Important	48	53.9	55.2	
Missing	Total	87	97.8	100.0	
Total	System	2	2.2		

Table 150
Attitudes1- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Strongly disagree	8	9.0	9.3	9.3	
	Disagree	Neutral	27	30.3	31.4	
	Agree	10	11.2	11.6	40.7	
	Strongly Agree	33	37.1	38.4	52.3	
Total	8	9.0	90.7			
Missing	System	86	96.6	100.0	100.0	
Total		3	3.4			

Table 151
Attitudes2- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
	Strongly disagree	1	1.1	1.1	9.1
	Disagree	7	7.9	8.0	18.2
Valid	Neutral	8	9.0	9.1	73.9
	Agree	49	55.1	55.7	100.0
	Strongly Agree	23	25.8	26.1	
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 152
Attitudes3- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Strongly disagree	1	1.1	1.1	1.1	
	Disagree	Neutral	3	3.4	3.4	
	Agree	9	10.1	10.2	4.5	
	Strongly Agree	43	48.3	48.9	14.8	
Total	32	36.0	36.4	63.6		
Missing	System	88	98.9	100.0		
Total		1	1.1			

Table 153
Attitudes4- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					2.3
	Disagree	2	2.2	2.3	8.0
	Neutral	5	5.6	5.7	50.0
Valid	Agree	37	41.6	42.0	100.0
	Strongly Agree	44	49.4	50.0	
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 154
Attitudes5- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					2.3
Valid	Disagree	2	2.2	2.3	13.6
	Neutral	10	11.2	11.4	63.6
	Strongly Agree	44	49.4	50.0	100.0
	Total	32	36.0	36.4	
Missing	System	88	98.9	100.0	
Total		1	1.1		

Table 155
Attitudes6- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
	Strongly disagree	1	1.1	1.1	4.5
	Disagree	3	3.4	3.4	27.3
Valid	Neutral	20	22.5	22.7	73.9
	Agree	41	46.1	46.6	100.0
	Strongly Agree	23	25.8	26.1	
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 156
Attitudes7- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
	Strongly disagree	1	1.1	1.1	2.3
	Disagree	1	1.1	1.1	5.7
Valid	Neutral	3	3.4	3.4	45.5
	Agree	35	39.3	39.8	100.0
	Strongly Agree	48	53.9	54.5	
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 157
Attitudes8- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Disagree	2	2.2	2.3	2.3
	Neutral	2	2.2	2.3	4.5
Valid	Agree	31	34.8	35.2	39.8
	Strongly Agree	53	59.6	60.2	100.0
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 158
Attitudes9- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					1.1
Valid	Disagree	1	1.1	1.1	8.0
	Agree	6	6.7	6.8	50.0
	Strongly Agree	37	41.6	42.0	100.0
	Total	44	49.4	50.0	
Missing	System	88	98.9	100.0	
Total		1	1.1		

Table 159
Attitudes10- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Strongly disagree	1	1.1	1.1	1.1
	Disagree	1	1.1	1.1	2.3
Valid	Neutral	6	6.7	6.8	9.1
	Agree	39	43.8	44.3	53.4
	Strongly Agree	41	46.1	46.6	100.0
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Administrator's Survey - Ethical Assessment Practices.
Table 160
Descriptive Statistics for Administrator's Survey - Ethical Assessment Practices

| | N | Mean | Std. Deviation |
| :--- | ---: | ---: | ---: | ---: |
| Ethical Practices1 | 88 | 1.00 | .00 |
| Ethical Practices2 | 88 | .05 | .21 |
| Ethical Practices3 | 84 | .75 | .44 |
| Ethical Practices4 | 85 | .64 | .48 |
| Ethical Practices5 | 85 | .89 | .31 |
| Ethical Practices6 | 88 | .15 | .36 |

Table 161
Ethical Practices1- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Ethical	88	98.9	100.0	100.0
Missing	System	1	1.1		
Total		89	100.0		

Table 162
Ethical Practices2- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					95.5
Valid	Unethical	84	94.4	95.5	100.0
	Ethical	4	4.5	4.5	
Missing	Total	System	88	98.9	100.0
Total		1	1.1		

Table 163
Ethical Practices3- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					25.0
Valid	Unethical	Ethical	21	23.6	25.0
	Total	63	70.8	75.0	100.0
Missing	System	84	94.4	100.0	
Total		59	5.6		

Table 164

Ethical Practices4- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent	
					36.5	
Valid	Unethical	Ethical	31	34.8	36.5	
	Total	84	60.7	63.5	100.0	
Missing	System	4	95.5	100.0		
Total		89	4.5			

Table 165
Ethical Practices5- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent	
					10.6	
Valid	Unethical	Ethical	76	10.1	85.4	89.4
	Total	85	95.5	100.0		
Missing	System	4	4.5			
Total		89	100.0			

Table 166
Ethical Practices6- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					85.2
Valid	Unethical	75	84.3	85.2	14.8
	Ethical	13	14.6	100.0	
Missing	Total	System	88	98.9	
Total		1	1.1		

Administrator's Survey - Preparation and Training.

Table 167
Descriptive Statistics for Administrator's Survey - Preparation and Training

	N	Mean	Std. Deviation	
Preparation \& Training2	86	.73		.45
Preparation \& Training3	85	3.73	.61	

Table 168
Preparation \& Training2- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					26.7
Valid	No	23	25.8	26.7	100.0
	Yes	63	70.8	73.3	
Missing	Total	86	96.6	100.0	
Total		3	3.4		

Table 169
Preparation \& Training3- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	Not at all prepared	1	1.1	1.2	1.2
	Slightly prepared	1	1.1	1.2	2.4
Valid	Somewhat prepared	17	19.1	20.0	22.4
	Well prepared	66	74.2	77.6	100.0
	Total	85	95.5	100.0	
Missing	System	4	4.5		
Total		89	100.0		

Administrator's Survey - Involvement in Student Assessment.

Table 170
Descriptive Statistics for Administrator's Survey - Involvement in Student Assessment

	N	Mean	Std. Deviation	
Involvment1	89	2.37	1.25	
Involvment2	89	2.64	1.33	
Involvment3	89	2.28	1.35	
Involvment4	89	2.35	1.37	

Table 171
Involvement1- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not involved	11	12.4	12.4	12.4
	Moderately involved	6	6.7	6.7	19.1
	Involved	30	33.7	33.7	52.8
	Highly involved	23	25.8	25.8	78.7
	Very highly involved	19	21.3	21.3	100.0
	Total	89	100.0	100.0	

Table 172
Involvement2- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Not involved	10	11.2	11.2	11.2
	7	7.9	7.9	19.1
	19	21.3	21.3	40.4
	22	24.7	24.7	65.2
	31	34.8	34.8	100.0
	89	100.0	100.0	
Total				

Table 173
Involvement3- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid				12.4	12.4
	Not involved	11	12.4	19.1	31.5
	17	19.1	20.2	51.7	
	18	20.2	24.7	76.4	
	Highly involved	22	24.7	23.6	100.0
	Very highly	21	23.6	100.0	
	involved	89	100.0		

Table 174
Involvement4- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not involved	12	13.5	13.5	13.5
	Moderately involved	13	14.6	14.6	28.1
	Involved	19	21.3	21.3	49.4
	Highly involved	22	24.7	24.7	74.2
	Very highly involved	23	25.8	25.8	100.0
	Total	89	100.0	100.0	

Administrator's Survey - Impact.

Table 175
Descriptive Statistics for Administrator's Survey - Impact

	N	Mean		Std. Deviation
Impact2	88	3.34		.50
Impact3	88	3.39	.56	
Impact4	83	3.18	.52	
Impact5	86	3.16	.70	

Table 176
Impact2- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
	None	1	1.1	1.1	1.1
Valid	Positive	56	62.9	63.6	64.8
	Very positive	31	34.8	35.2	100.0
	Total	88	98.9	100.0	
Missing	System	1	1.1		
Total		89	100.0		

Table 177
Impact3- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					3.4
Valid	None	3	3.4	3.4	58.0
	Positive	48	53.9	54.5	100.0
	Very positive	37	41.6	42.0	
Missing	Total	88	98.9	100.0	
Total		1	1.1		

Table 178
Impact4- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid None Positive Very positive	5	5.6	6.0	6.0	
	Total	58	65.2	69.9	75.9
	System	20	22.5	24.1	100.0
Total		83	93.3	100.0	

Table 179
Impact5- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					17.4
Valid	None	15	16.9	17.4	66.3
	Positive	42	47.2	48.8	100.0
	Very positive	29	32.6	33.7	
Missing	Sotal	86	96.6	100.0	
Total		3	3.4		

Administrator's Survey - Assessment Practices of Students with Learning

Disabilities.

Table 180
Administrator's Survey - Assessment of Students with LD with peers

		Frequency	Percent	Valid Percent	Cumulative Percent
					59.3
Valid	No	Yes	35	57.3	59.3
	Total	86	96.3	40.7	100.0
Missing	System	3	3.6	100.0	
Total		89	100.0		

Table 181
Descriptive Statistics for Pull Out by Subjects- Administrators

	N	Mean		Std. Deviation
Language Arts	49	2.78	1.30	
Arabic	49	2.80	1.32	
Math	49	2.88	1.40	
Science	47	2.15	1.52	
Social studies	41	1.70	1.60	

Table 182
Language Arts- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
				2.0	2.0
	Never	1	1.1	26.5	28.6
	Occasionally	13	14.6	4.1	32.7
Valid	Half the time	2	2.2	26.5	59.2
	Most of the time	13	14.6	40.8	100.0
	All the time	20	22.5	100.0	
	Total	49	55.1		
Missing	System	40	44.9		
Total		89	100.0		

Table 183
Arabic- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
					2.0
	Never	1	1.1	2.0	28.6
	Occasionally	13	14.6	26.5	34.7
Valid	Half the time	3	3.4	6.1	55.1
	Most of the time	10	11.2	20.4	100.0
	All the time	22	24.7	44.9	
	Total	49	55.1	100.0	
Missing	System	40	44.9		
Total		89	100.0		

Table 184
Math- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
				6.1	
	Never	3	3.4	20.4	26.5
	Occasionally	10	11.2	4.1	30.6
Valid	Half the time	2	2.2	18.4	49.0
	Most of the time	9	10.1	51.0	100.0
	All the time	25	28.1	100.0	
	Total	49	55.1		
Missing	System	40	44.9		
Total		89	100.0		

Table 185
Science- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Never	7	7.9	14.9	14.9
	Occasionally	16	18.0	34.0	48.9
	Most of the time	11	12.4	23.4	72.3
	All the time	13	14.6	27.7	100.0
Missing	Total	System	47	52.8	100.0
Total		42	47.2		

Table 186

Social Studies- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Never	12	13.5	29.3	29.3
	Occasionally	13	14.6	31.7	61.0
	Half the time	1	1.1	2.4	63.4
	Most of the time	5	5.6	12.2	75.6
	All the time	10	11.2	24.4	100.0
	Total	41	46.1	100.0	
Missing	System	48	53.9		
Total		89	100.0		

Administrator's Survey - Accommodations.

Table 187
Oral instructions- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	77	86.5	100.0	100.0
Does not Apply	12	13.5		
Total	89	100.0		

Table 188
Computer Responses- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	33	37.1	100.0	100.0
Does not Apply	56	62.9		
Total	89	100.0		

Table 189
Small Group- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	59	66.3	100.0	100.0
Does not Apply	30	33.7		
Total	89	100.0		

Table 190
Alternate Site- Administrators

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid Yes | 65 | 73.0 | 100.0 | 100.0 |
| Does not Apply | 24 | 27.0 | | |
| Total | 89 | 100.0 | | |

Table 191
Test Preparation- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	72	80.9	100.0	100.0
Does not Apply	17	19.1		
Total	89	100.0		

Table 192
Large Print- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid Yes				100.0	
Does not Apply	82	92.1			
Total	7	7.9			

Table 193
Verbal Response- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	69	77.5	100.0	100.0
Does not Apply	20	22.5		
Total	89	100.0		

Table 194
Assistive Devices- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	30	33.7	100.0	100.0
Does not Apply	59	66.3		
Total	89	100.0		

Table 195
Seating-Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	49	55.1	100.0	100.0
Does not Apply	40	44.9		
Total	89	100.0		

Table 196

Breaks- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid Yes				100.0	
Does not Apply	60	67.4			
Total	29	32.6			

Table 197
Reduce per Page/Line- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	71	79.8	100.0	100.0
Does not Apply	18	20.2		
Total	89	100.0		

Table 198
Scribe- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	37	41.6	100.0	100.0
Does not Apply	52	58.4		
Total	89	100.0		

Table 199
Calculator- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	56	62.9	100.0	100.0
Does not Apply	33	37.1		
Total	89	100.0		

Table 200
Lighting-Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid Yes				100.0	
Does not Apply	25	28.1			
Total	64	71.9			

Table 201
Multiple Sessions- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	58	65.2	100.0	100.0
Does not Apply	31	34.8		
Total	89	100.0		

Table 202
Prompts- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes				100.0
Does not Apply	65	73.0	100.0	
Total	24	27.0		

Table 203
Reader- Administrators

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid Yes | 58 | 65.2 | 100.0 | 100.0 |
| Does not Apply | 31 | 34.8 | | |
| Total | 89 | 100.0 | | |

Table 204
Tape Recorder- Administrators

| | Frequency | Percent | Valid Percent | Cumulative
 Percent |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Valid Yes | | | | 100.0 |
| Does not Apply | 15 | 16.9 | 100.0 | |
| Total | 74 | 83.1 | | |

Table 205
Extended Time- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes				100.0
Does not Apply	84	94.4	100.0	
Total	5	5.6		

Table 206
Distractions- Administrators

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Yes	74	83.1	100.0	100.0
Missing	System	15	16.9		
Total		89	100.0		

Table 207
Different Order- Administrators

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid Yes	57	64.0	100.0	100.0
Does not Apply	32	36.0		
Total	89	100.0		

Teachers Comparisons

Teachers According to their Teaching Assignment.

Traditional and Alternative Assessment Practices.
H_{0} : There is no difference in traditional and alternative assessment practices between special education and regular education teachers.
H_{A} : There is a difference in traditional and alternative assessment practices between special education and regular education teachers.

An independent samples t-test was conducted on traditional and alternative assessment practices (TQ1 to TQ20). See Table 208 below for descriptive statistics. Levene's test for homoscedasticity was not statistically significant $(\mathrm{F}=.61, \mathrm{p}=.804)$ assuming equal variances between the two groups. The result was statistically significant $(\mathrm{t}=2.007, \mathrm{df}=670, \mathrm{p}=.045)$, therefore the null hypothesis was rejected. The differences between special education and regular education teachers' traditional and alternative assessment practices are related to their frequency in (1) using paper-and-pencil tests provided by the curriculum rather than creating own (TQ3), (2) using true or false items (TQ4a), (3) using multiple choice items (TQ4b), (4) using fill in the blank items (TQ4c), (5) using essay items (TQ4e), (6) using portfolio assessments (TQ14b), and (7) estimating the reliability of alternative assessments (TQ15). The difference is also related to how important special education and regular education teachers think (8) multiple choice items
are (TQ9b), as well as rating the importance of (9) alternative assessments (TQ16), (10) creating performance and portfolio assessments (TQ17), and (11) the importance of using portfolios to assess students (TQ19b).

Table 208
Group Statistics for Traditional and Alternative Assessment Practices by Teaching Assignment

	Teaching assignment	N	Mean	Std. Deviation	Std. Error Mean
Traditional and	Special Education	375	93.89	17.55	.91
Alternative	Regular Education	297	91.01	19.55	1.13
Assessments					

Assessment for Learning (AFL).
H_{0} : There is no difference in the assessment for learning practices between special education and regular education teachers.
H_{A} : There is a difference in the assessment for learning practices between special education and regular education teachers.

An independent samples t-test was conducted on assessment for learning practices (TQ21 to TQ32). See Table 209 below for descriptive statistics. Levene's test for homoscedasticity was not statistically significant $(\mathrm{F}=2.422, \mathrm{p}=.12)$ assuming equal variances between the two groups. The result was statistically significant $(\mathrm{t}=2.138, \mathrm{df}=665, \mathrm{p}=.033)$, therefore the null hypothesis was rejected. The differences between special education and regular education teachers' assessment for learning practices are related to (1) discussing the answers with each student after a test (TQ22) and giving students opportunities to ask questions (TQ31).

Table 209
Group Statistics for Assessment for Learning (AFL) by Teaching Assignment

	Teaching assignment	N	Mean	Std. Deviation	Std. Error Mean
AFL	Special Education	373	41.93	4.76	.25
	Regular Education	294	41.05	5.79	.34

Ethical Assessment Practices.

H_{0} : There is no difference in ethical assessment practices between special education and regular education teachers.
H_{A} : There is a difference in ethical assessment practices between special education and regular education teachers.

An independent samples t - test was conducted on ethical assessment practices (TQ33 to TQ38). See Table 210 below for descriptive statistics. Levene's test for homoscedasticity was significant $(\mathrm{F}=4.67, \mathrm{p}=.03)$ assuming unequal variances between the two groups. Therefore, the Welsh-Aspin test with Satterthwaite's adjustment to the degrees of freedom was conducted. The result was not statistically significant $(\mathrm{t}=.896, \mathrm{df}=663, \mathrm{p}=.37)$. The researcher failed to reject the null hypothesis.

Table 210
Group Statistics for Teachers' Ethical Assessment Practices by Teaching Assignment

	Teaching Assignment	N	Mean	Std. Deviation	Std. Error Mean
Ethical	Special Education	372	3.58	.96	.05
Assessment	Regular Education	293	3.51	1.09	.06
Practices					

Preparation and Training.
H_{0} : There is no difference in preparation and training between special education and regular education teachers.

Abstract

H_{A} : There is a difference in preparation and training between special education and regular education teachers.

An independent samples t - test was conducted on preparation and training (TQ39 to TQ41). See Table 211below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=.94, \mathrm{p}=.33)$ assuming equal variances between the two groups. The result was not statistically significant $(\mathrm{t}=-.495, \mathrm{df}=658, \mathrm{p}=.621)$. The researcher failed to reject the null hypothesis.

Table 211
Group Statisticsfor Teachers' Preparation and Training by Teaching Assignment

	Teaching Assignment	N	Mean	Std. Deviation	Std. Error Mean
Preparation	Special Education	369	7.42	1.72	.09
and	Regular Education	291	7.49	1.63	.1
Training					

Involvement in Student Assessment.
H_{0} : There is no difference in the involvement in student assessment between special education and regular education teachers.
H_{A} : There is a difference in the involvement in student assessment between special education and regular education teachers.

An independent samples t - test was conducted on involvement in student assessment (TQ42 to TQ45). See Table 212below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=.09, \mathrm{p}=.764)$ assuming equal variances between the two groups. The result was not statistically significant $(\mathrm{t}=.703$, $\mathrm{df}=655, \mathrm{p}=.482)$. The researcher failed to reject the null hypothesis.

Table 212
Group Statistics for Teachers' Involvement in Student Assessment by Teaching Assignment

	Teaching assignment	N	Mean	Std. Deviation	Std. Error Mean
Involvement	Special Education	368	7.35	4.19	.22
	Regular Education	289	7.12	4.10	.24

Impact.
H_{0} : There is no difference in the perceived impact of student assessment between special education and regular education teachers.
H_{A} : There is a difference in the perceived impact of student assessment between special education and regular education teachers.

An independent samples t - test was conducted on impact (TQ46 to TQ50). See Table 213below for descriptive statistics. Levene's test for homoscedasticity was not significant (F $=.90, \mathrm{p}=.765$) assuming equal variances between the two groups. The result was statistically significant $(t=3.409, \mathrm{df}=626, \mathrm{p}=.001)$. The null hypothesis was rejected. The difference in the perceived impact of student assessment between special education and regular education teachers is related to hiring specialists (TQ50).

Table 213
Group Statistics for Teachers' Impact by Teaching Assignment

	Teaching Assignment	N	Mean	Std. Deviation	Std. Error Mean
Impact	Special Education	351	12.50	2.29	.12
	Regular Education	277	11.86	2.39	.14

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in the assessment of students with learning disabilities between special education and regular education teachers.

Abstract

H_{A} : There is a difference in the assessment of students with learning disabilities between special education and regular education teachers.

An independent samples t - test was conducted on assessment of students with learning disabilities (TQ51 to TQ52e). See Table 214below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=3.269, \mathrm{p}=.71)$ assuming equal variances between the two groups. The result was not statistically significant $(\mathrm{t}=.611, \mathrm{df}=652, \mathrm{p}=.541)$. The researcher failed to reject the null hypothesis.

Table 214
Group Statistics for Teachers' Assessment of Students with Learning Disabilities by Teaching Assignment

	Teaching Assignment	N	Mean	Std. Deviation	Std. Error Mean
Assessment of	Special Education	369	6.50	6.86	.36
LD	Regular Education	285	6.18	6.46	.39

Teachers According to their Educational Level.

Traditional and Alternative Assessment Practices.
H_{0} : There is no difference in teachers' traditional and alternative assessment practices according to their educational level.
H_{A} : There is a difference in teachers' traditional and alternative assessment practices according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' traditional and alternative assessment practices. See Table 216 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.442$, $\mathrm{p}=.81$) assuming equal variances between the two groups. The result was not significant (p $=.974)$. The researcher failed to reject the null hypothesis.

Table 215
Descriptives for Traditional and Alternative Assessment Practices by Educational Level
$\left.\begin{array}{lrrrrrrrrr}\hline & \mathrm{N} & \text { Mean } & \begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array} & \begin{array}{c}\text { Std. } \\ \text { Error }\end{array} & \begin{array}{c}95 \% \text { Confidence } \\ \text { Interval for Mean } \\ \text { Lower } \\ \text { Upper }\end{array} & \text { Minimum } & \text { Maximum } \\ \text { Bound } & \text { Bound }\end{array}\right]$

Assessment for Learning (AFL).
H_{0} : There is no difference in teachers' assessment for learning practices according to their educational level.
H_{A} : There is a difference in teachers' assessment for learning practices according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' assessment for learning practices. See Table 217 below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=1.017, \mathrm{p}=.413)$ assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.645$). The researcher failed to reject the null hypothesis.

Table 216
Descriptives for Assessment for Learning (AFL)by Educational Level

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	85	41.85	4.94	. 54	40.78	42.91	29	48
Equivalent								
Bachelors	309	41.51	5.82	. 33	40.86	42.16	13	48
Teaching	130	41.74	4.65	. 41	40.93	42.55	31	48
Diploma Masters	123	41.27	4.54	. 41	40.46	42.08	32	48
EdD/PhD	5	44.00	4.69	2.10	38.18	49.82	36	48
Other	8	41.00	5.10	1.80	36.74	45.26	35	48
Bachelors and Teaching	6	38.33	4.97	2.03	33.12	43.55	34	48
Diploma Total	666	41.54	5.25	. 20	41.14	41.94	13	48

Ethical Assessment Practices.
H_{0} : There is no difference in teachers' ethical assessment practices according to their educational level.
H_{A} : There is a difference in teachers' ethical assessment practices according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' assessment for learning practices. See Table 218 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.687, \mathrm{p}=.66$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.578$). The researcher failed to reject the null hypothesis.

Table 217
Descriptives for Teachers' Ethical Assessment Practices by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma								
or	85	3.53	. 96	. 10	3.32	3.74	1	6
Equivalent								
Bachelors	305	3.56	. 98	. 06	3.45	3.67	0	6
Teaching	128	3.46	1.08	. 10	3.27	3.65	0	7
Diploma	128	3.46	1.08	. 10	3.27	3.65	0	7
Masters	126	3.65	1.07	. 10	3.46	3.84	0	6
EdD/PhD	5	4.00	1.23	. 55	2.48	5.52	3	6
Other	8	3.25	1.17	. 41	2.28	4.22	1	4
Bachelors and	6	3.17	1.47	. 60	1.62	4.71	1	5
Teaching		3.17	1.4	. 60	1.62	4.71	1	5
Diploma								
Total	663	3.55	1.02	. 04	3.47	3.63	0	7

Preparation and Training.
H_{0} : There is no difference in teachers' preparation and training according to their educational level.
H_{A} : There is a difference in teachers' preparation and training according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' preparation and training. See Table 219 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=4.11, \mathrm{p}=.00$) assuming unequal variances between the two groups. The result was not significant ($p=.105$). The researcher failed to reject the null hypothesis.

Table 218
Descriptives for Teachers' Preparation and Training by Educational Level

	N	Mean	Std Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	85	7.16	2.24	. 24	6.68	7.65	0	9
Equivalent Bachelors	306	7.33	1.7	. 10	7.1	7.53	0	9
Teaching	128	7.70	1.40	. 12	7.46	7.95	2	9
Diploma Masters	121	7.64	1.46	. 13	7.37	7.90	2	9
EdD/PhD	5	8.40	. 55	. 25	7.72	9.08	8	9
Other	8	7.50	1.93	. 68	5.89	9.11	4	9
Bachelors and Teaching	6	8.00	. 89	. 37	7.06	8.94	7	9
Diploma Total	659	7.46	1.69	. 07	7.33	7.58	0	9

Involvement in Student Assessment.
H_{0} : There is no difference in teachers' involvement in student assessment according to their educational level.
H_{A} : There is a difference in teachers' involvement in student assessment according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' involvement in student assessment. See Table 219 below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=1.287, \mathrm{p}=.261)$ assuming equal variances between the two groups. The result was significant ($\mathrm{p}=.037$). The null hypothesis was rejected. Post Hoc comparisons locate the difference between those holding a teaching diploma and those holding an EdD/PhD degree.

Table 219
Descriptives for Teachers' Involvement in Student Assessmentby Educational Level

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	84	8.13	4.32	. 47	7.19	9.07	0	16
Equivalent Bachelors	30	7	4.20	24		7.63	0	6
Teaching	127	6.89	3.85	. 34	6.21	7.57	0	16
Masters	123	7.07	4.05	. 37	6.35	7.80	0	16
EdD/PhD	5	6.60	6.50	3.00	-1.48	14.68	0	15
Other	6	12.00	3.35	1.37	8.49	15.51	8	16
Bachelors and Teaching	6	6.33	4.27	1.75	1.85	10.82	1	11
Diploma Total	656	7.25	4.16	. 16	6.93	7.56	0	16

Impact.

H_{0} : There is no difference in teachers' perceived impact of student assessment according to their educational level.
H_{A} : There is a difference in teachers' perceived impact of student assessment according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' perceived impact of student assessment. See Table 220 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.976, \mathrm{p}=.441$) assuming equal variances between the two groups. The result was not significant ($p=.16$). The researcher failed to reject the null hypothesis.

Table 220
Descriptives for Teachers' Impact by Educational Level

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma								
or	83	15.99	2.49	. 27	15.44	16.53	9	20
Equivalent								
Bachelors	290	15.19	3.14	. 18	14.83	15.55	2	20
Teaching	123	15.14	2.70	. 24	14.66	15.62	3	20
Diploma	123	15.14	2.70	. 24	14.66	15.62	3	20
Masters	119	15.63	2.45	. 23	15.19	16.08	11	20
EdD/PhD	5	15.40	2.19	. 98	12.68	18.12	12	18
Other	6	16.33	4.13	1.69	12.00	20.67	9	20
Bachelors and								
Teaching	6	13.83	2.04	. 83	11.69	15.98	10	15
Diploma								
Total	632	15.37	2.86	. 11	15.14	15.59	2	20

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in teachers' assessment practices of students with learning disabilities according to their educational level.
H_{1} : There is a difference in teachers' assessment practices of students with learning disabilities according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of educational level on teachers' assessment practices of students with learning disabilities. See Table 221 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=2.041, \mathrm{p}=.058$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.709$). The researcher failed to reject the null hypothesis.

Table 221
Descriptives for Teachers'Assessment of Students with Learning Disabilities by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS								
Diploma or	84	16.40	8.43	. 92	14.58	18.23	0	37
Equivalent								
Bachelors	303	16.49	8.71	. 50	15.50	17.47	0	36
Teaching	126	16.95	9.51	85	15.28	18.63	0	39
$\begin{array}{llllllllll}\text { Diploma } & 126 & 16.95 & 9.51 & .85 & 15.28 & 18.63 & 0 & 39\end{array}$								
Masters	122	16.18	8.56	. 78	14.65	17.71	0	38
EdD/PhD	4	13.00	10.74	5.37	-4.09	30.09	2	27
Other	8	13.25	4.56	1.61	9.44	17.06	7	19
Bachelors and								
Teaching	6	12.00	3.52	1.44	8.30	15.70	6	16
Diploma								
Total	653	16.41	8.74	. 34	15.74	17.08	0	39

Teachers According to the District.

Traditional and Alternative Assessment.
H_{0} : There is no difference in teachers' traditional and alternative assessment practices of according to the district.
H_{1} : There is a difference in teachers' traditional and alternative assessment practices of according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' teachers' traditional and alternative assessment practices. See Table 222 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=7.109, \mathrm{p}=.00$) assuming unequal variances between the two groups. The result was significant $(\mathrm{p}=.00)$. The
null hypothesis was rejected. Post Hoc comparisons revealed differences between the South and the other districts in their use of traditional and alternative assessments, as well as a significant difference between the North and the Bekaa.

Table 222
Descriptives for Teachers' Traditional and Alternative Assessment Practices by District

	N	Mean	Std. Deviation	Std. Error	95% Interval for Mean Lower		Upper	
					Bound	Bound		
Beirut	220	92.29	16.88	1.14	90.05	94.53	33	138
Mount	140	95.02	17.75	1.50	92.06	97.99	51	137
Lebanon	47	97.81	15.85	2.31	93.16	102.46	52	130
Bekaa	147	94.16	13.99	1.15	91.88	96.44	46	121
North	125	85.66	25.33	2.27	81.18	90.15	0	150
South	1279	92.42	18.59	.71	91.02	93.82	0	150
Total	679					Maximum		

Assessment for Learning (AFL).
H_{0} : There is no difference in teachers' assessment for learning practices of according to the district.
H_{A} : There is a difference in teachers' assessment for learning practices of according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' assessment for learning practices. See Table 223 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=5.325, \mathrm{p}=.00$) assuming unequal variances between the two groups, but the Welch and Brown-Forsythe tests of equality of means were not significant ($\mathrm{p}=.919$ and $\mathrm{p}=.921$ respectively).The ANOVA result was not significant (p $=.916$). The researcher failed to reject the null hypothesis.

Table 223
Descriptives for Teachers'Assessment for Learning(AFL)by District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | | Minimum | Upper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Ethical Assessment Practices.

Ho: There is no difference in teachers' ethical assessment practices according to the district.
H_{A} : There is a difference in teachers' ethical assessment practices according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' ethical assessment practices. See Table 224 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=2.585, \mathrm{p}=.036$) assuming unequal variances between the two groups. The result was significant ($\mathrm{p}=.038$). Post Hoc comparisons revealed differences in ethical assessment practices4 between teachers in Beirut, Mount Lebanon and the Bekaa valley ($\mathrm{p}=.022$), in ethical assessment practices5 between the North and the South $(\mathrm{p}=0.008)$ and in ethical assessment practices 6 between teachers in the Bekaa and teachers in Beirut, The North and the South of Lebanon.

Table 224
Descriptives for Teachers' Ethical Assessment Practices by District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | Minimum
 Upper | | Maximum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bound | Bound | | | | | | | |

Preparation and Training.

H_{0} : There is no difference in teachers' preparation and training according to the district.
H_{A} : There is a difference in teachers' preparation and training according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' preparation and training. See Table 225 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=4.843, \mathrm{p}=.001$) assuming unequal variances between the two groups. The result was significant ($\mathrm{p}=.00$). Post Hoc comparisons revealed differences in preparation and training1 between Beirut, Mount Lebanon, Bekaa and the North and the south of Lebanon ($\mathrm{p}<0.05$), and in preparation and training2 between Mount Lebanon and the North and the Bekaa of Lebanon (p<0.05).

Table 225
Descriptives for Teachers' Preparation and Training by District

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Beirut	215	7.68	1.52	. 10	7.48	7.89	0	9
Mount	138	7.56	1.67	14		7.84	1	9
Lebanon	138	7.56	1.67	. 14	7.28	7.84	1	9
Bekaa	47	8.00	1.57	. 23	7.54	8.46	1	9
North	145	7.30	1.50	. 12	7.05	7.54	2	9
South	122	6.91	2.03	. 18	6.55	7.27	0	9
Total	667	7.45	1.68	. 07	7.33	7.58	0	9

Involvement in Student Assessment.

H_{0} : There is no difference in teachers' involvement in student assessment according to the district.
H_{A} : There is a difference in teachers' involvement in student assessment according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' involvement in student assessment. See Table 226 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=3.273$, $\mathrm{p}=.011$) assuming unequal variances between the two groups. The result was significant ($\mathrm{p}=.014$). Post Hoc comparisons revealed differences in involvement in student assessment between Mount Lebanon and the Bekaa valley ($\mathrm{p}=.012$), and the Bekaa valley and the north of Lebanon ($\mathrm{p}=.043$).

Table 226
Descriptives for Teachers' Involvement in Student Assessment by District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Impact.

H_{0} : There is no difference in teachers' perceived impact of student assessment according to the district.
H_{A} : There is a difference in teachers' perceived impact of student assessment according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' perceived impact of student assessment. See Table 227 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=3.091, \mathrm{p}=.015$) assuming unequal variances between the two groups, but the Welch and Brown-Forsythe tests of equality of means were not significant ($\mathrm{p}=.303$ and $\mathrm{p}=.3$ respectively). The result was not significant $(\mathrm{p}=$.283). The researcher failed to reject the null hypothesis.

Table 227
Descriptives for Teachers' Impact by District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | Maximum

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in teachers' assessments of students with learning disabilities according to the district.
H_{A} : There is a difference in teachers' assessments of students with learning disabilities according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on teachers' assessments of students with learning disabilities. See Table 228 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=3.233, \mathrm{p}=.012$) assuming unequal variances between the two groups. The result was significant ($\mathrm{p}=.043$). Post Hoc comparisons revealed differences in teachers' assessments of students with learning disabilities between North and South Lebanon ($\mathrm{p}=.35$).

Table 228
Descriptives for Teachers'Assessment of LD by District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Teachers According to their Teaching Level.

Traditional and Alternative Assessment Practices.
H_{0} : There is no difference in teachers' traditional and alternative assessment practices according to theirteaching level.
H_{A} : There is a difference in teachers' traditional and alternative assessment practices according to theirteaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' traditional and alternative assessment practices. See Table 229 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=1.152, \mathrm{p}=.33$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.348$). The researcher failed to reject the null hypothesis.

Table 229
Descriptives for Teachers' Traditional and Alternative Assessment Practices by Teaching

Level								
	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Elementary	413	91.07	19.83	. 98	89.15	92.99	0	150
Middle	97	94.20	15.78	1.60	91.02	97.38	47	137
High School	34	94.00	15.42	2.64	88.62	99.38	63	119
Elementary and Middle	79	95.84	18.51	2.08	91.69	99.98	34	132
Middle and High School	30	94.47	16.30	2.98	88.38	100.55	46	125
K-12	20	90.65	12.44	2.78	84.83	96.47	70	115
Total	676	92.39	18.61	. 72	90.98	93.79	0	150

Assessment for Learning (AFL.)
H_{0} : There is no difference in teachers' assessment for learning practices according to theirteaching level.
H_{A} : There is a difference in assessment for learning practices according to theirteaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' assessment for learning practices. See Table 230 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.536, \mathrm{p}=.781$) assuming equal variances between the two groups. The result was not significant ($p=.559$). The researcher failed to reject the null hypothesis.

Table 230
Descriptives for Teachers' Assessment for Learning (AFL)by Teaching Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean Lower		Minimum	Mpper

Ethical Assessment Practices.

H_{0} : There is no difference in teachers' ethical assessment practices according to their teaching level.
H_{A} : There is a difference in teachers' ethical assessment practices according to their teaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' ethical assessment practices. See Table 231 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=1.183, \mathrm{p}=.314$) assuming equal variances between the two groups. The result was not significant $(p=.206)$. The researcher failed to reject the null hypothesis.

Table 231
Descriptives for Teachers' Ethical Assessment Practices by Teaching Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Elementary	404	3.49	. 96	. 05	3.39	3.58	0	6
Middle	97	3.62	1.04	. 11	3.41	3.83	1	6
High School	34	3.62	. 95	. 16	3.28	3.95	2	6
Elementary and Middle	79	3.61	1.21	. 14	3.34	3.88	0	6
Middle and High School	30	3.67	1.21	. 22	3.21	4.12	1	7
K-12	20	4.05	1.19	. 27	3.49	4.61	2	6
Total	667	3.55	1.03	. 04	3.47	3.63	0	7

Preparation and Training.
H_{0} : There is no difference in teachers' preparation and training according to their teaching level.
H_{A} : There is a difference in teachers' preparation and training according to their teaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' preparation and training. See Table 232 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=2.021, \mathrm{p}=.61$) assuming equal variances between the two groups. The result was not significant $(p=.83)$. The researcher failed to reject the null hypothesis.

Table 232
Descriptives for Teachers' Preparation and Training by Teaching Level

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum	
						Lower	Upper		
					Bound	Bound			
Elementary	404	7.42	1.66	.08	7.26	7.58	0	9	
Middle	97	7.36	1.72	.17	7.01	7.71	3	9	
High School	34	8.09	1.24	.21	7.66	8.52	5	9	
Elementary and	77	7.21	2.01	.23	6.75	7.66	0	9	
Middle									
Middle and High	29	7.97	1.15	.21	7.53	8.40	5	9	
School									
K-12	20	7.45	1.70	.38	6.65	8.25	4	9	
7.00	3	8.67	.58	.33	7.23	10.10	8	9	
Total	664	7.45	1.68	.07	7.32	7.58	0	9	

Involvement in Student Assessment.
H_{0} : There is no difference in teachers' involvement instudent assessment according to their teaching level.
H_{A} : There is a difference in teachers' involvement instudent assessment according to their teaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' involvement instudent assessment. See Table 233 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.846, \mathrm{p}=.534$) assuming equal variances between the two groups. The result was not significant ($p=.157$). The researcher failed to reject the null hypothesis.

Table 233
Descriptives for Teachers' Involvement in Student Assessment by Teaching Level

| | N | Mean | Std.
 Deviation | Std.
 Error | 95% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Impact.

H_{0} : There is no difference in teachers' perceived impact of student assessment according to their teaching level.
H_{A} : There is a difference in teachers' perceived impact of student assessment according to their teaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' perceived impact of student assessment. See Table 234 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=1.273, \mathrm{p}=.267$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.76$). The researcher failed to reject the null hypothesis.

Table 234
Descriptives for Teachers' Impact by Teaching Level

	N	Mean	Std. Deviation	Std. Error	95% Con Interval Lower Bound	fidence or Mean Upper Bound	Minimum	Maximum
Elementary	389	15.44	2.95	. 15	15.15	15.73	3	20
Middle	92	15.21	3.32	. 35	14.52	15.89	2	20
High School	34	15.50	2.40	. 41	14.66	16.34	9	20
Elementary and Middle	73	15.47	2.46	. 29	14.89	16.04	5	20
Middle and High School	25	14.72	2.29	. 44	13.81	15.63	10	20
K-12	20	14.80	2.44	. 55	13.66	15.94	9	20
7.00	3	14.00	1.00	. 58	11.52	16.48	13	15
Total	636	15.36	2.88	. 11	15.13	15.58	2	20

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in teachers' assessments of students with learning disabilities according to their teaching level.
H_{A} : There is a difference in teachers' assessments of students with learning disabilities according to their teaching level.

A one way between subjects ANOVA was conducted to compare the effect of the teaching level on teachers' assessments of students with learning disabilities. See Table 235 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=1.022, \mathrm{p}=.41$) assuming equal variances between the two groups. The result was not significant ($p=.964$). The researcher failed to reject the null hypothesis.

Table 235
Descriptives for Teachers' Assessments of LD by Teaching Level

| | N | Mean | Std.
 Deviation | Std.
 Error | 95\% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Administrators Comparisons

Administrators According to their Educational Level.

Content, Methods, Mission, Policies and Attitudes.
H_{0} : There is no difference in administrators' assessments content, methods, mission, policies and attitudes according to their educational level.
H_{A} : There is a difference in administrators' assessments content, methods, mission, policies and attitudes according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' assessments content, methods, mission, policies and attitudes. See Table 236 below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=2.25, \mathrm{p}=.071)$ assuming equal variances between the two groups. The result was not significant $(\mathrm{p}=.195)$. The researcher failed to reject the null hypothesis.

Table 236
Descriptives for Content, Methods, Mission, Policies and Attitudes by Educational Level

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	6	109.50	8.80	3.60	100.26	118.74	94	116
Equivalent								
Bachelors	30	98.47	10.73	1.96	94.46	102.47	79	122
Teaching	12	94.58	16.45	4.75	84.13	105.04	59	116
Diploma Masters	32	95.09	14.68	2.60	89.80	100.39	60	123
EdD/PhD	7	101.00	7.17	2.79	94.37	107.63	88	111
Bachelors and Teaching	1	97.00					97	97
Diploma Total	88	97.65	13.11	1.40	94.87	100.43	59	123

Ethical Assessment Practices.
H_{0} : There is no difference in administrators' ethical assessment practices according to their educational level.
H_{A} : There is a difference in administrators' ethical assessment practices according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' ethical assessment practices. See Table 237 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.673, \mathrm{p}=.613$) assuming equal variances between the two groups. The result was not significant ($p=.219$). The researcher failed to reject the null hypothesis.

Table 237
Descriptives of Administrators' Ethical Assessment Practices by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma								
or	6	3.50	. 55	. 22	2.93	4.07	3	4
Equivalent								
Bachelors	30	3.57	. 97	. 18	3.20	3.93	2	5
Teaching	12	3.00	1.04	. 30	2.34	3.66	1	5
Diploma	12	3.00	1.04	. 30	2.34	3.66	1	5
Masters	33	3.21	. 96	. 17	2.87	3.55	1	5
EdD/PhD	7	3.71	. 76	. 29	3.02	4.41	3	5
Bachelors and	1	2.00					2	2
Teaching		2.00	.	.				
Diploma								
Total	89	3.35	. 96	. 10	3.15	3.55	1	5

Preparation and Training.
H_{0} : There is no difference in administrators' preparation and training according to their educational level.
H_{A} : There is a difference in administrators' preparation and training according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' preparation and training. See Table 238 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=2.918, \mathrm{p}=.026$) assuming unequal variances between the two groups. The result was not significant $(p=.44)$. The researcher failed to reject the null hypothesis.

Table 238
Descriptives for Administrators Preparation and Training by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	6	4.17	2.04	. 83	2.02	6.31	0	5
Equivalent								
Bachelors	29	4.66	. 61	. 11	4.42	4.89	3	5
Teaching	12	4.00	1.13	. 33	3.28	4.72	1	5
Diploma Masters	33	4.30	1.13 .95	. 17	3.97	4.64	1	5
EdD/PhD	6	4.33	. 52	. 21	3.79	4.88	4	5
Bachelors and Teaching	1	4.00		.		.	4	4
Diploma Total	87	4.37	. 97	. 10	4.16	4.57	0	5

Involvement in Student Assessment.
H_{0} : There is no difference in administrators' involvement in student assessment according to their educational level.
H_{A} : There is a difference in administrators' involvement in student assessment according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' involvement in student assessment. See Table 239below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=2.863, \mathrm{p}=.028$) assuming unequal variances between the two groups. The result was not significant ($\mathrm{p}=.642$). The researcher failed to reject the null hypothesis.

Table 239
Descriptives for Administrators' Involvement in Student Assessment by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma								
or	6	11.83	4.36	1.78	7.26	16.40	7	16
Equivalent								
Bachelors	30	9.43	5.05	. 92	7.55	11.32	2	16
Teaching	12	8.67	3.17	. 92	6.65	10.68	4	13
Diploma	12	8.67	3.17	. 92	6.65	10.68	4	13
Masters	33	9.36	4.70	. 82	7.70	11.03	0	16
EdD/PhD	7	11.29	2.22	. 84	9.24	13.33	8	15
Bachelors and	1	12.00					12	12
Teaching	1	12.00	.	.			12	12
Diploma								
Total	89	9.64	4.46	. 47	8.70	10.58	0	16

Impact.

H_{0} : There is no difference in administrators' perceived impact of student assessment according to their educational level.
H_{A} : There is a difference in administrators' perceived impact of student assessment according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' perceived impact of student assessment. See Table 240 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=$ $1.117, \mathrm{p}=.354$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.592$). The researcher failed to reject the null hypothesis.

Table 240
Descriptives for Administrators' Impact by Educational Level

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in administrators' assessments of students with learning disabilities according to their educational level.
H_{A} : There is a difference in administrators' assessments of students with learning disabilities according to their educational level.

A one way between subjects ANOVA was conducted to compare the effect of the educational level on administrators' assessments of students with learning disabilities. See Table 241 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=$ $2.717, \mathrm{p}=.035$) assuming unequal variances between the two groups. The result was not significant ($p=.2$). The researcher failed to reject the null hypothesis.

Table 241
Descriptives of Administrators'Assessments of LD by Educational Level

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
HS Diploma or	6	14.17	5.08	2.07	8.84	19.49	9	24
Equivalent Bachelors	29	19.90					9	36
Teaching								
Diploma	12	23.33	11.71	3.38	15.89	30.77	5	40
Masters	32	22.31	7.58	1.34	19.58	25.05	8	36
EdD/PhD	6	23.67	8.82	3.60	14.41	32.93	14	37
Bachelors and Teaching	1	18.00	.	.		.	18	18
Diploma Total	86	21.12	8.18	. 88	19.36	22.87	5	40

Administrators According to their Position.

Content, Methods, Mission, Policies and Attitudes.
H_{0} : There is no difference in administrators' assessment content, methods, mission, policies and attitudes according to their position.
H_{A} : There is a difference in administrators' assessment content, methods, mission, policies and attitudes according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' assessment content, methods, mission, policies and attitudes. See Table 242 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=$ $1.853, \mathrm{p}=.127$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.705$). The researcher failed to reject the null hypothesis.

Table 242
Descriptives for Content, Methods, Mission, Policies and Attitudes by Position

	N	Mean	$\begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array}$	$\begin{array}{c}\text { Std. } \\ \text { Error }\end{array}$	$\begin{array}{c}95 \% \\ \text { Interval for Mean } \\ \text { Lower }\end{array}$		$\begin{array}{c}\text { Upper } \\ \text { Bound }\end{array}$		
Bound									

Ethical Assessment Practices.

H_{0} : There is no difference in administrators' ethical assessment practices according to their position.
H_{A} : There is a difference in administrators' ethical assessment practices according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' ethical assessment practices. See Table 243 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=3.608, \mathrm{p}=.009$) assuming unequal variances between the two groups, but the Welch and Brown -Forsythe results were not significant ($p=.777$ and $p=.769$ respectively). The ANOVA result was not significant ($p=.714$). The researcher failed to reject the null hypothesis.

Table 243
Descriptives for Administrators' Ethical Assessment Practices by Position

| | N | Mean | Std.
 Deviation | Std.
 Error | 95% Confidence
 Interval for Mean
 Lower
 Bound | | Upper
 Bound | Minimum |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Preparation and Training.
H_{0} : There is no difference in administrators' preparation and training according to their position.
H_{A} : There is a difference in administrators' preparation and training according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' preparation and training. See Table 244 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=1.277$, $\mathrm{p}=.286$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.663$). The researcher failed to reject the null hypothesis.

Table 244
Descriptives for Administrators' Preparation and Training by Position

	N	Mean	$\begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array}$	$\begin{array}{c}\text { Std. } \\ \text { Error }\end{array}$	$\begin{array}{c}95 \% \text { Confidence } \\ \text { Interval for Mean } \\ \text { Lower }\end{array}$		Minimum	Mpper
Bound	Bound							

Involvement in Student Assessment.
H_{0} : There is no difference in administrators' involvement in student assessment according to their position.
H_{A} : There is a difference in administrators' involvement in student assessment according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' involvement in student assessment. See Table 245 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=2.329, \mathrm{p}=.063$) assuming equal variances between the two groups. The result was significant ($\mathrm{p}=.004$). The null hypothesis was rejected. Post Hoc comparisons revealed a difference between school principals and other ($\mathrm{p}=.004$) and department head and other $(\mathrm{p}=.008)$.

Table 245
Descriptives for Administrators' Involvement in Student Assessment by Position

| | N | Mean | $\begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array}$ | $\begin{array}{c}\text { Std. } \\ \text { Error }\end{array}$ | $\begin{array}{c}95 \% \text { Confidence } \\ \text { Interval for Mean } \\ \text { Lower }\end{array}$ | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |$)$

Impact.

H_{0} : There is no difference in administrators' perceived impact of student assessment according to their position.
H_{A} : There is a difference in administrators' perceived impact of student assessment according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' perceived impact of student assessment. See Table 246 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.788, \mathrm{p}=.536$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.458$). The researcher failed to reject the null hypothesis.

Table 246
Descriptives for Administrators' Impact by Position

	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
School Principal	18	13.28	1.74	. 41	12.41	14.14	11	16
Assistant	9	11.89	2.71	. 90	9.80	13.97	6	16
Coordinator	24	13.13	2.05	. 42	12.26	13.99	8	16
Department Head	26	12.69	1.59	. 31	12.05	13.34	9	15
Other	11	12.45	2.91	. 88	10.50	14.41	5	15
Total	88	12.82	2.07	. 22	12.38	13.26	5	16

Assessment of Students with Learning Disabilities.
H_{0} : There is no difference in administrators' assessments of students with learning disabilities according to their position.
H_{A} : There is a difference in administrators' assessments of students with learning disabilities according to their position.

A one way between subjects ANOVA was conducted to compare the effect of the position on administrators' assessments of students with learning disabilities. See Table 247 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.697$, $\mathrm{p}=.597$) assuming equal variances between the two groups. The result was not significant (p $=.836$). The researcher failed to reject the null hypothesis.

Table 247
Descriptives for Administrators'Assessments of LD by Position

| | N | Mean | Std.
 Deviation | Std.
 Error | 95% Confidence
 Interval for Mean
 Lower | | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Administrators According to the District.

Content, Methods, Mission, Policies and Attitudes.
H_{0} : There is no difference in administrators' assessmentcontent, methods, mission, policies and attitudes according to the district.
H_{A} : There is a difference in administrators' assessmentcontent, methods, mission, policies and attitudes according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' assessmentcontent, methods, mission, policies and attitudes. See Table 248 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.767$, $\mathrm{p}=.55$) assuming equal variances between the two groups. The result was not significant (p $=.924$). The researcher failed to reject the null hypothesis.

Table 248
Descriptives for Content, Methods, Mission, Policies and Attitudes by District

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean Lower		Minimum	Mpper

Ethical Assessment Practices.

Ho: There is no difference in administrators' ethical assessment practices according to the district.
H_{A} : There is a difference in administrators' ethical assessment practices according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' ethical assessment practices. See Table 249 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=2.876, \mathrm{p}=.028$) assuming unequal variances between the two groups, but the Welch and Brown-Forsythe tests of equality of means were not significant ($\mathrm{p}=.107$ and $\mathrm{p}=.422$ respectively). The result was not significant ($\mathrm{p}=.348$). The researcher failed to reject the null hypothesis.

Table 249
Descriptives for Administrator's Ethical Assessment Practicesby District

| | N | Mean | Std.
 Deviation | Std.
 Error | 95% Confidence
 Interval for Mean
 Lower | Minimum | Mpper |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Maximum

Preparation and Training.
H_{0} : There is no difference in administrators' preparation and training according to the district.
H_{1} : There is a difference in administrators' preparation and training according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' preparation and training. See Table 250 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.269, \mathrm{p}=.897$) assuming equal variances between the two groups. The result was not significant $(\mathrm{p}=.869)$. The researcher failed to reject the null hypothesis.

Table 250
Descriptives for Administrators' Preparation and Training by District

N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
				Lower	Upper		
				Bound	Bound		
38	4.45	. 72	. 12	4.21	4.69	3	5
19	4.42	1.02	. 23	3.93	4.91	1	5
4	4.50	1.00	. 50	2.91	6.09	3	5
13	4.15	1.14	. 32	3.46	4.84	1	5
13	4.23	1.36	. 38	3.41	5.05	0	5
87	4.37	. 97	. 10	4.16	4.57	0	5

Involvement in Student Assessment.
H_{o} : There is no difference in administrators' involvement in student assessment according to the district.
H_{A} : There is a difference in administrators' involvement in student assessment according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' involvement in student assessment. See Table 251 below for descriptive statistics. Levene's test for homoscedasticity was not significant ($\mathrm{F}=.785, \mathrm{p}=.538$) assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.951$). The researcher failed to reject the null hypothesis.

Table 251
Descriptives for Administrators' Involvement in Student Assessmentby District
$\left.\begin{array}{lrrrrrrrr}\hline & \mathrm{N} & \text { Mean } & \begin{array}{c}\text { Std. } \\ \text { Deviation }\end{array} & \begin{array}{c}\text { Std. } \\ \text { Error }\end{array} & \begin{array}{c}95 \% \text { Confidence } \\ \text { Interval for Mean } \\ \text { Lower }\end{array} & \text { Minimum } & \text { Maximum } \\ \text { Upper }\end{array}\right]$

Impact.

H_{0} : There is no difference in administrators' perceived impact of student assessment according to the district.
H_{A} : There is a difference in administrators' perceived impact of student assessment according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' perceived impact of student assessment. See Table 252 below for descriptive statistics. Levene's test for homoscedasticity was significant ($\mathrm{F}=3.097, \mathrm{p}=.02$) assuming unequal variances between the two groups, but the Welch and Brown-Forsythe tests of equality of means were not significant ($\mathrm{p}=.319$ and $\mathrm{p}=0.691$ respectively). The result was not significant ($p=0.37$). The researcher failed to reject the null hypothesis.

Table 252
Descriptives for Administrators' Impact by District

	N	Mean	Std. Deviation	Std. Error	95% Interval for Mean Lower		Upper	
Bound	Bound							
Beirut	38	12.45	2.00	.32	11.79	13.10	6	16
Mount	20	13.25	1.94	.44	12.34	14.16	9	16
Lebanon	4	12.00	4.83	2.42	4.31	19.69	5	16
Bekaa	13	12.77	1.88	.52	11.63	13.90	10	16
North	13	13.54	1.33	.37	12.73	14.34	12	15
South	88	12.82	2.07	.22	12.38	13.26	5	16
Total								

Assessment of Student with Learning Disabilities.
H_{0} : There is no difference in administrators' assessments of students with learning disabilities according to the district.
H_{A} : There is a difference in administrators' assessments of students with learning disabilities according to the district.

A one way between subjects ANOVA was conducted to compare the effect of the district on administrators' assessments of students with learning disabilities. See Table 253 below for descriptive statistics. Levene's test for homoscedasticity was not significant $(\mathrm{F}=1.302, \mathrm{p}=.276)$ assuming equal variances between the two groups. The result was not significant ($\mathrm{p}=.098$). The researcher failed to reject the null hypothesis.

Table 253
Decriptives for Administrators'Assessments of LDby District

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean Lower		Minimum	Maximum
					Upper			
						Bound	Bound	
Beirut	38	19.18	7.03	1.14	16.87	21.49	8	36
Mount	19	22.63	8.62	1.98	18.48	26.78	5	40
Lebanon	4	18.50	10.41	5.20	1.94	35.06	9	28
Bekaa	12	20.50	7.36	2.12	15.83	25.17	8	35
North	13	25.92	9.49	2.63	20.19	31.66	10	37
South	86	21.12	8.18	.88	19.36	22.87	5	40
Total								

Teachers and Administrators Comparisons

Teachers and Administrators According to the District.
Ethical Assessment Practices.
$\mathrm{H}_{\mathrm{o} 1}$: Group will have no effect on ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on ethical assessment practices.
H_{02} : District will have no effect on ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 2}$: District will have an effect on ethical assessment practices.
H_{03} : Group and district interaction will have no effect on ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on ethical assessment practices.
A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 254 below. There was no significant main effect for the group ($\mathrm{F}=3.51$, $\mathrm{p}=.06$), no significant main effect for the district ($\mathrm{F}=1.03, \mathrm{p}=.31$), and no significant main effect for the interaction between group and district ($\mathrm{F}=1.21, \mathrm{p}=.31$). The researcher failed to reject the three null hypotheses.

Table 254
Descriptive Statistics for Ethical Assessment Practices by Group and District

Group	District	Mean	Std. Deviation	N
Teacher	Beirut	3.58	. 89	215
	Mount Lebanon	3.48	1.00	139
	Bekaa	3.93	1.06	46
	North	3.41	1.18	147
	South	3.60	1.02	123
	Total	3.55	1.02	670
Administrator	Beirut	3.24	1.10	38
	Mount Lebanon	3.48	. 87	21
	Bekaa	3.00	1.41	4
	North	3.15	. 80	13
	South	3.77	. 44	13
	Total	3.35	. 95	89
Total	Beirut	3.53	. 93	253
	Mount Lebanon	3.48	. 98	160
	Bekaa	3.86	1.11	50
	North	3.39	1.15	160
	South	3.62	. 98	136
	Total	3.53	1.02	759

Preparation and Training.

H_{ol} : Group will have no effect on preparation and training.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on preparation and training.
H_{02} : District will have no effect on preparation and training.
$\mathrm{H}_{\mathrm{A} 2}$: District will have an effect on preparation and training.
H_{03} : Group and district interaction will have no effect on preparation and training.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on preparation and training.
A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 255 below. There was no significant main effect for the group ($\mathrm{F}=.311$, $\mathrm{p}=.577$), no significant main effect for the district ($\mathrm{F}=.755, \mathrm{p}=.555$), and no significant main
effect for the interaction between group and district ($\mathrm{F}=.174, \mathrm{p}=.952$). The researcher failed to reject the three null hypotheses.

Table 255
Descriptive Statistics for Preparation and Training by Group and District

Group	District	Mean	Std. Deviation	N
Teacher	Beirut	4.33	. 82	215
	Mount Lebanon	4.23	. 90	138
	Bekaa	4.40	. 83	47
	North	4.17	. 83	145
	South	4.27	. 89	121
	Total	4.27	. 85	666
Administrator	Beirut	4.45	. 72	38
	Mount Lebanon	4.42	1.02	19
	Bekaa	4.50	1.00	4
	North	4.15	1.14	13
	South	4.23	1.36	13
	Total	4.37	. 97	87
Total	Beirut	4.34	. 81	253
	Mount Lebanon	4.25	. 91	157
	Bekaa	4.41	. 83	51
	North	4.16	. 85	158
	South	4.27	. 94	134
	Total	4.28	. 87	753

Involvement in Student Assessment.
H_{ol} : Group will have no effect on involvement in student assessment.
H_{Al} : Group will have an effect on involvement in student assessment.
H_{02} : District will have no effect on involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 2}$: District will have an effect on involvement in student assessment.
H_{03} : Group and district interaction will have no effect on involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on involvement in student assessment.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 256 below. There was a significant main effect for the group ($\mathrm{F}=14.796$, $\mathrm{p}=.00$), the first null hypothesis was rejected. There was no significant main effect for the district $(\mathrm{F}=.198, \mathrm{p}=.939)$, and no significant main effect for the interaction between group and district $(\mathrm{F}=.775, \mathrm{p}=.541)$. The researcher failed to reject the second and third null hypotheses.

Table 256
Descriptive Statistics of Involvement in Student Assessment by Group and District

Group	District	Mean	Std. Deviation	N
Teacher	Beirut	7.53	3.96	218
	Mount Lebanon	6.59	4.00	138
	Bekaa	8.83	3.58	47
	North	6.89	4.19	142
	South	7.37	4.71	119
	Total	7.26	4.16	664
	Beirut	9.21	4.45	38
Administrator	Mount Lebanon	10.00	3.95	21
	Bekaa	9.75	6.40	4
	North	10.23	5.26	13
	South	9.69	4.40	13
	Total	9.64	4.46	89
	Beirut	7.78	4.07	256
	Mount Lebanon	7.04	4.15	159
	Betal	8.90	3.78	51
	North	7.17	4.37	155
	South	7.60	4.72	132
	Total	7.54	4.27	753

Impact.

H_{01} : Group will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the perceived impact of student assessment.
H_{02} : District will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 2}$: District will have an effect on the perceived impact of student assessment.
H_{03} : Group and district interaction will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on the perceived impact of student assessment.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 257 below. There was no significant main effect for the group ($\mathrm{F}=2.181$, $\mathrm{p}=.14$), no significant main effect for the district ($\mathrm{F}=.987$, $\mathrm{p}=.414$), and no significant main effect for the interaction between group and district $(\mathrm{F}=.746, \mathrm{p}=.561)$. The researcher failed to reject the three null hypotheses.

Table 257
Descriptive Statistics for Impact by Group and District

Group	District	Mean	Std. Deviation	N
Teacher	Beirut	12.09	2.26	207
	Mount Lebanon	12.18	2.25	132
	Bekaa	12.79	2.72	47
	North	12.03	1.95	136
	South	12.42	2.87	113
	Total	12.21	2.36	635
	Beirut	12.45	2.00	38
Administrator	Mount Lebanon	13.25	1.94	20
	Bekaa	12.00	4.83	4
	North	12.77	1.88	13
	South	13.54	1.33	13
	Total	12.82	2.07	88
	Beirut	12.15	2.22	245
	Mount Lebanon	12.32	2.24	152
	Total	12.73	2.87	51
	North	12.09	1.95	149
	South	12.53	2.77	126
	Total	12.28	2.33	723

Assessment of Students with Learning Disabilities.
H_{ol} : Group will have no effect on the assessments of students with learning disabilities.
H_{Al} : Group will have an effect on the assessments of students with learning disabilities.
H_{02} : District will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 2}$: District will have an effect on the assessments of students with learning disabilities.
H_{03} : Group and district interaction will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on the assessments of students with learning disabilities.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 258 below. There was a significant main effect for the group ($\mathrm{F}=15.831$, $\mathrm{p}=.00$), the first null hypothesis was rejected. There was a significant main effect for the district $(\mathrm{F}=2.451, \mathrm{p}=.045)$, the second null hypothesis was rejected. There was no significant main effect for the interaction between group and district ($\mathrm{F}=1.126, \mathrm{p}=.343$). The researcher failed to reject the third null hypotheses.

Table 258
Descriptive Statistics for Assessments of LD by Group and District

Group	District	Mean	Std. Deviation	N
Teacher	Beirut	16.71	7.93	216
	Mount Lebanon	15.92	9.79	138
	Bekaa	15.34	7.92	47
	North	15.29	8.70	141
	South	18.39	8.82	119
	Total	16.45	8.71	661
	Beirut	19.18	7.03	38
Administrator	Mount Lebanon	22.63	8.62	19
	Bekaa	18.50	10.41	4
	North	20.50	7.35	12
	South	25.92	9.49	13
	Total	21.12	8.18	86

	Beirut	17.08	7.84	254
	Mount Lebanon	16.73	9.88	157
Total	Bekaa	15.59	8.06	51
	North	15.70	8.70	153
	South	19.13	9.13	132
	Total	16.98	8.77	747

Teachers and Administrators According to their Educational Level.

Ethical Assessment Practices.

H_{01} : Group will have no effect on the ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the ethical assessment practices.
H_{02} : Educational level will have no effect on the ethical assessment practices
$\mathrm{H}_{\mathrm{A} 2}$: Educational level will have an effect on the ethical assessment practices.
H_{03} : Group and educational level interaction will have no effect on the ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 3}$: Group and educational level interaction will have an effect on the ethical assessment practices.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 259 below. There was no significant main effect for the group ($\mathrm{F}=2.947$, $\mathrm{p}=.086$), no significant main effect for the educational level ($\mathrm{F}=1.403, \mathrm{p}=.211$), and no significant main effect for the interaction between group and educational level ($\mathrm{F}=.826, \mathrm{p}=.531$). The researcher failed to reject the three null hypotheses.

Table 259

Group	Education	Mean	Std. Deviation	N
Teacher	HS Diploma or Equivalent	3.53	. 96	85
	Bachelors	3.56	. 98	305
	Teaching Diploma	3.46	1.08	128
	Masters	3.65	1.07	126
	EdD/PhD	4.00	1.22	5
	Other	3.25	1.16	8
	Bachelors and Teaching Diploma	3.17	1.47	6
Administrator	Total	3.55	1.02	663
	HS Diploma or Equivalent	3.50	. 55	6
	Bachelors	3.57	. 97	30
	Teaching Diploma	3.00	1.04	12
	Masters	3.21	. 96	33
	EdD/PhD	3.71	. 76	7
	Bachelors and Teaching Diploma	2.00		1
Total	Total	3.35	. 95	89
	HS Diploma or Equivalent	3.53	. 94	91
	Bachelors	3.56	. 98	335
	Teaching Diploma	3.42	1.08	140
	Masters	3.56	1.06	159
	EdD/PhD	3.83	. 94	12
	Other	3.25	1.16	8
	Bachelors and Teaching Diploma	3.00	1.41	7
	Total	3.53	1.02	752

Preparation and Training.

H_{01} : Group will have no effect on the preparation and training.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the preparation and training.
H_{02} : Educational level will have no effect on the preparation and training.
$\mathrm{H}_{\mathrm{A} 2}$: Educational level will have an effect on the preparation and training.
H_{03} : Group and educational level interaction will have no effect on the preparation and training.
$\mathrm{H}_{\mathrm{A} 3}$: Group and educational level interaction will have an effect on the preparation and
training.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 260 below.There was no significant main effect for the group ($\mathrm{F}=.154$, $\mathrm{p}=.695$), no significant main effect for the educational level ($\mathrm{F}=.912, \mathrm{p}=.485$), and no significant main effect for the interaction between group and educational level ($\mathrm{F}=1.165, \mathrm{p}=.325$). The researcher failed to reject the three null hypotheses.

Table 260
Descriptive Statistics for Preparation and Training by Group and Educational Level

Group	Education	Mean	Std. Deviation	N
Teacher	HS Diploma or Equivalent	4.20	1.00	84
	Bachelors	4.26	. 85	306
	Teaching Diploma	4.25	. 87	128
	Masters	4.31	. 80	121
	EdD/PhD	4.40	. 55	5
	Other	4.38	. 52	8
	Bachelors and Teaching Diploma	4.50	. 55	6
Administrator	Total	4.27	. 86	658
	HS Diploma or Equivalent	4.17	2.04	6
	Bachelors	4.66	. 61	29
	Teaching Diploma	4.00	1.13	12
	Masters	4.30	. 95	33
	EdD/PhD	4.33	. 52	6
	Bachelors and Teaching Diploma	4.00		1
Total	Total	4.37	. 97	87
	HS Diploma or Equivalent	4.20	1.08	90
	Bachelors	4.30	. 84	335
	Teaching Diploma	4.23	. 89	140
	Masters	4.31	. 83	154
	EdD/PhD	4.36	. 50	11
	Other	4.38	. 52	8
	Bachelors and Teaching Diploma	4.43	. 53	7
	Total	4.28	. 87	745

Involvement in Student Assessment.
$\mathrm{H}_{\mathrm{o} 1}$: Group will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the involvement in student assessment.
H_{02} : Educational level will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 2}$: Educational level will have an effect on the involvement in student assessment.
H_{03} : Group and educational level interaction will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on the involvement in student assessment.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 261 below.There was a significant main effect for the group ($\mathrm{F}=12.849$, $\mathrm{p}=.00$), the first null hypothesis was rejected. There was a significant main effect for the educational level $(\mathrm{F}=2.229, \mathrm{p}=.039)$, the second null hypothesis was rejected. There was no significant main effect for the interaction between group and educational level ($\mathrm{F}=.443, \mathrm{p}=.819$). The researcher failed to reject the third null hypothesis.

Table 261
Descriptive Statistics for Involvement in Student Assessment by Group and Educational Level

Group	Education	Mean	Std. Deviation	N
Teacher	HS Diploma or Equivalent	8.13	4.32	84
	Bachelors	7.15	4.20	305
	Teaching Diploma	6.89	3.85	127
	Masters	7.07	4.05	123
	EdD/PhD	6.60	6.50	5
	Other	12.00	3.35	6
	Bachelors and Teaching Diploma	6.33	4.27	6
	Total	7.25	4.16	656
	HS Diploma or Equivalent	11.83	4.36	6
	Bachelors	9.43	5.05	30
Administrator	Teaching Diploma	8.67	3.17	12
	Masters	9.36	4.70	33
	EdD/PhD	11.29	2.21	7
	Bachelors and Teaching Diploma	12.00		1
	Total	9.64	4.46	89
	HS Diploma or Equivalent	8.38	4.40	90

Bachelors	7.36	4.33	335
Teaching Diploma	7.04	3.82	139
Masters	7.56	4.28	156
EdD/PhD	9.33	4.89	12
Other	12.00	3.35	6
Bachelors and Teaching Diploma	7.14	4.45	7
Total	7.53	4.27	745

Impact.

$\mathrm{H}_{\mathrm{o} 1}$: Group will have no effect on the perceived impact of student assessments.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the perceived impact of student assessments.
H_{02} : Educational level will have no effect on the perceived impact of student assessments.
$\mathrm{H}_{\mathrm{A} 2}$: Educational level will have an effect on the perceived impact of student assessments.
H_{03} : Group and educational level interaction will have no effect on the perceived impact of student assessments.
$\mathrm{H}_{\mathrm{A} 3}$: Group and district interaction will have an effect on the perceived impact of student assessments.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 262 below. There was a significant main effect for the group ($\mathrm{F}=2.645$, $\mathrm{p}=.04$), no significant main effect for the educational level $(\mathrm{F}=.799, \mathrm{p}=.571)$, and no significant main effect for the interaction between group and educational level ($\mathrm{F}=.377, \mathrm{p}=.865$). The researcher failed to reject the second and third null hypotheses.

Table 262
Descriptive Statistics for Impact by Group and Educational Level

Group	Education	Mean	Std. Deviation	N
Teacher	HS Diploma or Equivalent	12.63	2.23	83
	Bachelors	12.12	2.50	287
	Teaching Diploma	12.04	2.22	122
	Masters	12.39	2.05	119
	EdD/PhD	12.40	2.19	5

	Other	12.67	3.72	6
	Bachelors and Teaching Diploma	10.83	1.60	6
	Total	12.22	2.34	628
	HS Diploma or Equivalent	14.00	1.10	6
	Bachelors	12.83	2.19	29
Administrator	Teaching Diploma	12.58	1.83	12
	Masters	12.55	2.27	33
	EdD/PhD	13.57	1.51	7
	Bachelors and Teaching Diploma	12.00		1
	Total	12.82	2.07	88
	HS Diploma or Equivalent	12.72	2.20	89
	Bachelors	12.18	2.48	316
	Teaching Diploma	12.09	2.18	134
	Masters	12.43	2.09	152
	EdD/PhD	13.08	1.83	12
	Other	12.67	3.72	6
	Bachelors and Teaching Diploma	11.00	1.53	7
	Total	12.29	2.31	716

Assessment of Students with learning Disabilities.
H_{ol} : Group will have no effect on the assessments of students with learning disabilities. H_{Al} : Group will have an effect on the assessments of students with learning disabilities.
H_{02} : Educational level will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 2}$: Educational level will have an effect on the assessments of students with learning disabilities.
H_{03} : Group and educational level interaction will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 3}$: Group and educational level interaction will have an effect on the assessments of students with learning disabilities.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 263 below.There was a significant main effect for the group ($\mathrm{F}=6.331$, $\mathrm{p}=.012$), the first null hypothesis was rejected. There wasn't a significant main effect for the
educational level $(\mathrm{F}=1.083, \mathrm{p}=.371)$, and no significant main effect for the interaction between group and educational level $(\mathrm{F}=1.283, \mathrm{p}=.269)$. The researcher failed to reject the second and third null hypotheses.

Table 263
Descriptive Statistics for Assessments of LD by Group and Educational Level

Group	Education	Mean	Std. Deviation	N
Teacher	HS Diploma or Equivalent	16.40	8.43	84
	Bachelors	16.49	8.71	303
	Teaching Diploma	16.95	9.51	126
	Masters	16.18	8.56	122
	EdD/PhD	13.00	10.74	4
	Other	13.25	4.56	8
	Bachelors and Teaching Diploma	12.00	3.52	6
	Total	16.41	8.74	653
	HS Diploma or Equivalent	14.17	5.08	6
	Bachelors	19.90	7.04	29
	Teaching Diploma	23.33	11.71	12
	Masters	22.31	7.58	32
	EdD/PhD	23.67	8.82	6
	Bachelors and Teaching Diploma	18.00	8.	1
	Total	21.12	8.18	86
	HS Diploma or Equivalent	16.26	8.25	90
	Bachelors	16.79	8.62	332
	Teaching Diploma	17.51	9.84	138
	Masters	17.45	8.71	154
	EdD/PhD	19.40	10.59	10
	Other	13.25	4.56	8
	Bachelors and Teaching Diploma	12.86	3.93	7
	Total	16.96	8.80	739

Teachers and Administrators According to their Gender.

Ethical Assessment practices.
H_{ol} : Group will have no effect on the ethical assessment practices.
H_{Al} : Group will have an effect on the ethical assessment practices.
H_{02} : Gender will have no effect on the ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 2}$: Gender will have an effect on the ethical assessment practices.
H_{03} : Group and gender interaction will have no effect on the ethical assessment practices.
$\mathrm{H}_{\mathrm{A} 3}$: Group and gender interaction will have an effect on the ethical assessment practices.
A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 264 below. There was no significant main effect for the group ($\mathrm{F}=1.121$, $\mathrm{p}=.29$), no significant main effect for the gender ($\mathrm{F}=1.318, \mathrm{p}=.251$), and no significant main effect for the interaction between group and gender $(\mathrm{F}=.016, \mathrm{p}=.9)$. The researcher failed to reject the three null hypotheses.

Table 264
Descriptive Statistics for Ethical Assessment Practices by Group and Gender

Group	Gender	Mean	Std. Deviation	N
	Female	3.56	1.03	639
Teacher	Male	3.37	.84	27
	Total	3.55	1.03	666
	Female	3.39	.88	75
Administrator	Male	3.15	1.34	13
	Total	3.35	.96	88
	Female	3.54	1.02	714
Total	Male	3.30	1.02	40
	Total	3.53	1.02	754

Preparation and Training.

H_{ol} : Group will have no effect on preparation and training.
H_{Al} : Group will have an effect on preparation and training.
H_{02} : Gender will have no effect on preparation and training.
$\mathrm{H}_{\mathrm{A} 2}$: Gender will have an effect on preparation and training.
H_{03} : Group and gender interaction will have no effect on preparation and training.
$\mathrm{H}_{\mathrm{A} 3}$: Group and gender interaction will have an effect on preparation and training.
A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 265 below. There was no significant main effect for the group ($\mathrm{F}=.747$,
$\mathrm{p}=.388$), no significant main effect for the gender ($\mathrm{F}=1.328, \mathrm{p}=.25$), and no significant main effect for the interaction between group and gender ($\mathrm{F}=.219, \mathrm{p}=.64$). The researcher failed to reject the three null hypotheses.

Table 265
Descriptive Statistics for Preparation and Training by Group and Gender

Group	Gender	Mean	Std. Deviation	N	
Teacher	Female	4.26	.86	636	
	Male	4.37	.84	27	
	Total	4.27	.85	663	
Administrator	Female	4.32		1.02	74
	Male	4.58	.51	12	
	Total	4.36	.97	86	
Total	Female	4.27	.87	710	
	Male	4.44	.75	39	
	Total	4.28	.87	749	

Involvement in Student Assessment.

$\mathrm{H}_{\mathrm{o} 1}$: Group will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the involvement in student assessment.
H_{02} : Gender will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 2}$: Gender will have an effect on the involvement in student assessment.
H_{03} : Group and gender interaction will have no effect on the involvement in student assessment.
$\mathrm{H}_{\mathrm{A} 3}$: Group and gender interaction will have an effect on the involvement in student assessment.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 266 below. There was a significant main effect for the group ($\mathrm{F}=6.988$, $\mathrm{p}=.008$), the first null hypothesis was rejected. There was no significant main effect for the
gender $(\mathrm{F}=1.637, \mathrm{p}=.201)$, and no significant main effect for the interaction between group and gender $(\mathrm{F}=.224, \mathrm{p}=.636)$. The researcher failed to reject the second and third null hypotheses.

Table 266
Descriptive Statistics for Involvement in Student Assessment by Group and Gender

Group	Gender	Mean	Std. Deviation	
Teacher	Female	7.20	4.14	633
	Male	8.52	4.48	27
	Total	7.25	4.16	660
Administrator	Female	9.55	4.52	75
	Male	10.15	4.41	13
	Total	9.64	4.48	88
	Female	7.45	4.24	708
	Male	9.05	4.47	40
	Total	7.53	4.27	748

Impact.
H_{ol} : Group will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the perceived impact of student assessment.
H_{02} : Gender will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 2}$: Gender will have an effect on the perceived impact of student assessment.
H_{03} : Group and gender interaction will have no effect on the perceived impact of student assessment.
$\mathrm{H}_{\mathrm{A} 3}$: Group and gender interaction will have an effect on the perceived impact of student assessment.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 267 below. There was a significant main effect for the group ($\mathrm{F}=5.619$, $\mathrm{p}=.018$), the first null hypothesis was rejected. There was no significant main effect for the
gender $(\mathrm{F}=.627, \mathrm{p}=.429)$, and no significant main effect for the interaction between group and gender $(\mathrm{F}=1.428, \mathrm{p}=.232)$. The researcher failed to reject the second and third null hypotheses. Table 267

Descriptive Statistics for Impact by Group and Gender

Group	Gender	Mean	Std. Deviation	
Teacher	Female	12.21	2.37	605
	Male	12.04	2.09	26
	Total	12.20	2.36	631
Administrator	Female	12.70	2.11	74
	Male	13.54	1.76	13
	Total	12.83	2.08	87
	Female	12.26	2.35	679
	Male	12.54	2.09	39
	Total	12.28	2.34	718

Assessment of Students with Learning Disabilities.
H_{ol} : Group will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 1}$: Group will have an effect on the assessments of students with learning disabilities.
H_{02} : Gender will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 2}$: Gender will have an effect on the assessments of students with learning disabilities.
H_{03} : Group and gender interaction will have no effect on the assessments of students with learning disabilities.
$\mathrm{H}_{\mathrm{A} 3}$: Group and gender interaction will have an effect on the assessments of students with learning disabilities.

A two factor analysis of variance was conducted. The means and standard deviations are presented in Table 268 below. There was a significant main effect for the group ($\mathrm{F}=10.618$, $\mathrm{p}=.001$), the first null hypothesis was rejected. There was no significant main effect for the gender ($\mathrm{F}=.037, \mathrm{p}=.848$), and no significant main effect for the interaction between group and gender $(\mathrm{F}=.328, \mathrm{p}=.567)$. The researcher failed to reject the second and third null hypotheses.

Table 268
Descriptive Statistics for Assessments of LD by Group and Gender

Group	Gender	Mean	Std. Deviation	N
	Female	16.50	8.66	631
Teacher	Male	15.89	10.15	27
	Total	16.47	8.72	658
	Female	20.78	7.87	73
Administrator	Male	22.00	9.62	12
	Total	20.95	8.08	85
	Female	16.94	8.68	704
Total	Male	17.77	10.27	39
	Total	16.99	8.76	743

CHAPTER V

CONCLUSIONS

Discussion

The primary aims of this study were to discover and describe current assessment practices of students with learning disabilities in Lebanese private schools, in addition to administrators' and teachers' perceptions of those practices in special education in Lebanon via the CIPP (context, input, process, and product) evaluation model developed by Stufflebeam (1971). Only private schools were chosen for the study because of the absence of special education services within the public schools that represent 47% of the total schools in Lebanon, according to the Center of Educational Research and Development (CERD, 2010). A statistical comparison between administrators and teachers' responses regarding the ethical component of evaluation practices, as well as teacher and administrators' training and preparation for student assessment, their involvement in it, the impact they perceive student assessment practices are producing, and their assessments of students with learning disabilities.

Instrument Reliability

Teacher's Survey.

Using Cronbach Alpha's coefficient and Spearman-Brown to project subscale reliabilities to full scale reliabilities, it appeared that all the items on the five subscales of the teacher's survey showed high internal consistency[(1) Traditional and Alternative Assessments, AFL, (2) Ethical Assessment Practices, (3) Preparation and Training, (4) Involvement in Student Assessment, and (5) Impact].

Administrator's Survey.

Using Cronbach Alpha's coefficient, it appeared that two items needed to be deleted to increase the internal consistency for two of the subscales of the administrator's survey (Preparation and Training and Impact). The deleted items were question 43 (How would you describe your level of preparation in terms of assessing student performance that resulted from your teacher education program?) and question 46 (What impact has student assessment information had on changes in instructional or teaching methods used?). After the deletion of the above mentioned items which provided an increase in the Cronbach Alpha's value of the respective subscale, Spearman-Brown coefficient was obtained to project subscale reliabilities to full scale reliabilities. Overall, it appeared that four of the five subscales showed high internal consistency [(1) Content, Methods, Mission, Policies and Attitudes, (2) Preparation and Training, (3) Involvement in Student Assessment, and (4) Impact]. The subscale Ethical Assessment Practices had a lower Cronbach Alpha coefficient of .47.

Answering the CIPP Evaluation Questions

Context Evaluation - In what kind of educational setting do assessment practices take place?

Participants' Gender.

A considerable gender imbalance was noted. Female teachers constituted 96% of the participants vs. only 4% male teachers. Female administrators constituted 85% vs. 15% male administrators, slightly higher than the teachers' participants but still considerably imbalanced. Implications of this unequal representation of male and female educators might have some serious consequences on the quality of students' outcomes especially that teacher's gender has a large effect on student test and assessment performance (Dee, 2006).

Participants'Age.

The teachers' age mean was 32 years old and the administrators' age mean was 40 . The Participants' age means are classified as late young adults (32 years old) and middle adults (40 years old) according to the lifespan development theory (Santrock, 2012). They benefit from maturity compared to younger teachers who usually present higher levels of emotional exhaustion and depersonalizations (Antoniou et al., 2006).

Participants by Districts.

A total of 57 schools participated in this study. 33% were located in Beirut, the capital, with 32% of the total participating teachers and 43% of the total participating administrators. 23% were located in Mount Lebanon, with 21% of the total participating teachers and 23% of the total participating administrators. 9% were located in the Bekaa valley, with 7% of the total participating teachers and 4% of the total participating administrators. 17.5% were located in North Lebanon, with 22% of the total participating teachers and 15% of the total participating administrators.Finally, 17.5 \% were located in South Lebanon, with 18% of the total participating teachers and 15% of the total participating administrators.

Beirut held the largest percentage of schools (33\%). Being the capital with over 2 million inhabitants and the center of most commerce in the country, it is only logical to represent the highest percentage of participating schools.

Even though the Bekaa valley is populated by more than half a million, the small number of schools servicing students with learning disabilities is concurrent with the long history of deprivation that the region has been suffering from. According to the newest directory of inclusive schools in Lebanon that came out in May 2014, there are 8 private schools in the Bekaa
valley with special education services for students with learning disabilities. 5 participated in the study constituting 9% of the total participating schools. It is important to consider ways and funding to increase the number of schools in the Bekaa valley in order to reach and educate as many students with learning disabilities as possible and provide them with better chances of literacy and employment.

Participants' Educational Level.

There were 13% participating teachers and 7% participating administrators who held a high school diploma or an equivalent degree. Examining research studies such as ones conducted by Clotfelter et al. $(2007,2010)$ affirming that teacher credentials matter for student achievement raises a flag regarding employment of teachers and administrators not holding more than a high school diploma. When researchers find compelling evidence that teacher credentials affect student achievement (Clotfeller, 2010), which is measured through various assessment practices, in systematic and large ways enough to be policy relevant, the employment of teachers and administrators holding no more than a high school diploma should be seriously addressed.

There were 47% of participating teachers and 35% participating administrators who held a bachelors' degree, while 19% of participating teachers and 13% of participating administrators held a teaching diploma (which is usually additional to the bachelor degree). It is important to note that the bachelors' degrees are not necessarily in education. Many hired teachers and administrators hold bachelor degrees in psychology, English literature, Arabic studies, French language, counseling, political science, history... Some even hold engineering degrees. Considering the fact that only four private accredited universities in Lebanon offer special education majors and teaching diplomas (American University of Beirut, Lebanese American

University, Notre Dame University and Saint Joseph University), recruiting difficulties have forced many schools to hire uncertified teachers to fulfill their teaching and administrative vacancies.

At the graduate leve1, 19% of the participating teachers and 37% of the participating administrators held a Master's degree, while only 1% of the participating teachers and 8% of the participating administrators held an EdD or PhD . Even though graduate studies are usually a sign of professional growth, Master's degrees have not been found to predict higher student achievement or alter assessment practices, except for content specific masters' degrees in high school mathematics (Ladd, 2008).

Teachers' Teaching Level.

The vast majority of participating teachers were at the elementary level (61\%). This is consistent with the educational trajectory that students with learning disabilities travel in Lebanese private schools. Most schools provide special education services at the elementary level, but these services start to decline as students move to middle and high school due to increased academic demands that LD students cannot put up with, and the lack of resources that are considered burdening expenses for the school. Achievement gaps gradually increase and many students drop out or turn to more vocational programs when available.

Years of Teaching Experience and Years of Administrative Experience.

Teachers/administrators often state that experience is the best teacher (Goodlad, 1984) but "everything depends upon the quality of the experience which is had" (Dewey, 1963, p.27). Increased teacher/administrator effectiveness in assessment practices over the years of teaching occurs while they create meaning from experience and base this meaning on prior shaped
experiences (Dewey, 1963). Therefore, it is difficult to determine whether the participants' years of teaching or administrative experience are a positive indicator of successful assessment practices using a single numerical value (Teachers' years of teaching experience mean $=9$; administrators' years of teaching experience mean $=14$; administrators' years of administrative experience=8).

Content, Methods, Mission, Policies and Attitudes.

Regarding the content of student assessment, administrators reported a strong to very strong emphasis placed by their school on basic skills (90\%), cognitive development (89\%), affective development (83\%), social development (60\%) and student satisfaction and involvement with the school (82\%). They reported moderate emphasis on vocational or professional skills or competences (40\%).This moderate score might me an indicator that many students with learning disabilities have a single path option. Either get a high school degree or drop out due to lack of vocational opportunities.

Concerning Methods of assessment, administrators reported a strong to very strong emphasis on school developed instruments and tests (81%) and student performance methods (77\%). They reported moderate emphasis on the use of commercial instruments or tests (37\%)probably due to their expensive cost or to their lack of connectivity to the Lebanese curriculum due to the fact that they are imported from foreign countries.

The five items of the school's mission component subscale were mostly rated as being highly to very highly emphasized by administrators, responses ranging from 56% to 96% agreement.Similarly, the eight items of the assessment and policies subscale were mostly rated as important to very important by administrators, responses ranging from 70% to 92% agreement.

Nine out of the ten items of the Attitudes toward Assessment subscale were mostly agreed to highly agreed upon, responses ranging from 73% to 95% agreement. Interestingly, almost half of the administrators either felt neutral or did not agree about teachers being free to implement their own assessment approaches to student assessments at their school. This might be considered an important indicator when discussing power delegation regarding student assessments and teachers' contribution in the decision making process related to assessment approaches. Delandshere (1996, p.115) affirmed that "if the purpose of assessment is to improve teaching and learning, assessment needs to promote the active participation of teachers in their evolving interpretation of the standards and of their own practice".

Administrators' comparisons according to their educational level, position and district did not reveal any significant differences.

Ethical Assessment Practices.

Overall, 94% of teachers and 99% of administrators found it ethical to inform students about grading procedures and details, 93% of teachers and 94% of administrators found it unethical to give students a failing grade for the course because he/she had missed the final exam, and 84% of teachers and 71% of administrators found it ethical to count class participation as 30% of the final grade. However, a clear violation of the accuracy standards was recorded. 66% of teachers and 61% of administrators found it ethical to bump a student's participation grade up a few points to compensate a bad quiz score due to the student having a bad week because of problems at home. 91% of teachers and 85% of administrators found it ethical to consider student effort when determining grades and 24% of teachers (almost one fourth of the participating teachers) found it ethical to lower report card grades for disruptive behavior. These
"score polluting" practices overstate or understate the learner's true level of knowledge and understanding. When used in decision making, serious ethical concerns arise.

Teachers' comparisons according to their teaching assignment, educational level, and teaching level did not reveal any significant differences. However, there was a significant difference when teachers were compared according to the district. Teachers in Beirut were more likely to correctly rate counting participation as 30% of the final grade as an ethical practice compared to teachers in Northern schools and were more likely to correctly rate bumping a student participation grade for problems at home as an unethical practice compared to teachers in Southern schools. Teachers in Northern schools were more likely to correctly rate considering student effort when determining grades as an unethical practice than teachers in southern schools. And finally, teachers in Beirut and Southern schools were more likely to correctly rate lowering report card grades for disruptive behavior as an unethical practice than teachers in the Bekaa Valley.

Administrators' comparisons according to their educational level, position, and district did not reveal any significant differences in their ethical assessment practices.

Teachers and administrators' comparisons according the district, educational level, and gender did not reveal any significant differences as well.

Input Evaluation- How prepared and involved are teachers and administrators in student assessment?

Preparation and Training.

Forty five percent of the participating teachers and 46% of participating administrators did not feel well prepared in terms of assessing student performance in their teacher education program. This high percentage (almost half) could be attributed to two main reasons. The first is the fact that a considerable number of teachers and administrators did not attend teacher education programs, which explains their lack of exposure and studies of student assessment tools and approaches. The second is the weaknesses in student assessment subjects that Lebanese universities are suffering from.

Seventy percentof teachers and 71% of administrators reported attending in-service training sessions/workshops where the assessment of student performance was the main topic within the last three years, and 63% of teachers and 74% of administrators reported their current level of preparation in terms of assessing student performance as "well prepared". The increase in the percentage of teachers who felt "well prepared" in assessing student performance is most likely due to the trainings they attended and their field experiences acquired through classroom practices.

Teachers' comparisons according to their teaching assignment, educational level, and teaching level did not reveal significant differences in their preparation and training. However, a significant difference was recorded when they were compared according to the district. It appeared that teachers in the Bekaa attended significantly more trainings about student assessment than their colleagues in Mount Lebanon and the North, and teachers in Southern schools felt significantly less prepared in student assessment as a result of their teacher education program than teachers in the other 4 districts.

Administrators' comparisons according to their educational level, position, and district did not reveal any significant differences in their preparation and training. Teachers and administrators' comparisons according to the district, educational level, and gender did not reveal any significant differences either.

Involvement in Student Assessment.

Seventy-four percent of teachers and 81% of administrators reported being involved to very highly involved in creating new assessment techniques, 74% of teachers and 81% of administrators reported being involved to very highly involved in participating in program reviews, curricular evaluations, or planning activities using assessment results. 43% of teachers and 32% of administrators reported lack to moderate involvement in serving on school-wide committees on student assessment and 54% of teachers and 28% of administrators reported lack to moderate involvement in setting assessment policies for the school. Implications of these results suggest that teachers are more likely involved in assessment tasks directly related to the tangible assessment "subject related" product delivered to the student and are less likely to be involved at the institutional level in setting assessment policies. Administrators appeared to be involved to highly involved in the various assessment aspects of the school.

Teachers' comparisons did not reveal significant differences according to their teaching assignments and teaching level. However, significant differences were reported when compared according to their educational level and district. It appeared that teachers holding an EdD/PhD were significantly more involved in student assessment than those holding a teaching diploma, and teachers in the Bekaa were significantly more likely to serve on school-wide committee on student assessment and set assessment policies than teachers in Mount Lebanon.

Administrators' comparisons did not reveal significant differences in their involvement in student assessment according to their educational level or district. However, a significant difference was recorded when compared according to their position. Apparently, school principals and department head are much more involved in student assessment than those holding other administrative positions.

Teachers and Administrators comparisons according to the district and gender revealed significant differences at the group level. It seems that administrators are more involved in student assessment than teachers, similarly to teachers and administrators holding an $\mathrm{EdD} / \mathrm{PhD}$ compared to other degrees.

Process Evaluation - How are assessments applied in the classroom?

Traditional and Alternative Assessment Practices.

When teachers were compared according to their teaching assignment, there was a significant difference between special education and regular education teachers in their traditional and alternative assessment practices.

In terms of traditional assessments it appeared that special education teachers resorted to the following items and practices significantly more frequently than regular education teachers: (1) Using paper-and-pencil tests provided with the curriculum material rather than creating their own, (2) True/False items, (3) Multiple Choice items, and (4) Fill in the blank items. Special Education teachers thought that multiple choice items were more important as assessment items than their regular education colleagues.

Nevertheless, they showed significantly less usage of essays as an assessment tool, reported a significant higher frequency in using portfolio assessments and thought that alternative assessments, creating own performance and portfolio assessments, and using portfolios in their classroom were more important than their regular education colleagues did. The results can be described as contradictory. Special education teachers expressed their view about the importance of alternative assessments which was significantly higher than the regular education teachers, yet they still maintained higher frequencies of some traditional assessment practices. Some might attribute maintaining traditional assessment practices in the classroom to the shortage of time (Tierney, 2006). Even those who appreciate the potential of alternative assessments complain that it demands more time in practice (Morgan \& Watson, 2002; Dori, 2003), and that new assessments are too time-consuming (Torrance \& Pryor, 2001; Cheung, 2002; Hargreaves et al., 2002; Mabry et al., 2003).

When teachers were compared according to their educational level in their traditional and alternative assessment practices, there was no significant difference reported, nor was there a significant difference when they were compared according to their teaching level. However, a significant difference was recorded when compared according to the district. It appeared that southern teachers were the least to use traditional assessments and alternative assessments compared to teachers in other districts. Northern teachers reported the most use of traditional assessments while Bekaai teachers reported the most use of alternative assessments. Considering the fact that the Bekaa is one of the most deprived areas in Lebanon, being the district that employed alternative assessment practices the most is an interesting outcome. This could be a direct effect of various national and international educational NGOs working in the area, and organizing various trainings for teachers and schools.

Assessment for Learning.

Teachers reported high agreement with monitoring and scaffolding assessment for learning practices ranging from 78% to 99% agreement on the 12 items of the Assessment for Learning subscale. When compared according to their teaching assignment, there was a significant difference between special education and regular education teachers in a monitoring practice where special education teachers reported to more frequently discuss the answers given after a test with each student, and a scaffolding practice where special education teachers reported to more frequently give their students the opportunities to ask questions. Giving feedback to students and providing them with opportunities to express their understanding and question their learning are practices that are described by Black and Williams (1198b) to improve the quality of formative assessment. It could be considered a notable positive aspect for Lebanese special education teachers.Additional comparisons revealed no significant differences between teachers according to their educational level, to the district or to their teaching level.

Assessments of Students with Learning Disabilities.

Teachers' answers reflected the type of accommodations they reported using in the classroom when assessing students with learning disabilities. On the other hand, unless assigned teaching hours, administrators' answers reflected the type of accommodations they perceived being used by various teachers assessing students with learning disabilities or have instructed staff to implement.

Fifty-eight percent of teachers and 57% of administrators reported that students with disabilities did not complete the subject assessments with their peers in the general education classroom. 45% of teachers and 41% of administrators reported that students were pulled out for
language arts assessments all the time, 46% of teachers and 45% of administrators reported that students were pulled out for Arabic assessments all the time, 45% of teachers and 51% of administrators reported that students were pulled out for math assessment all the time, 33% of teachers and 28% of administrators reported that students were pulled out for science assessments all the time and 39% of teachers and 29% of administrators reported that students were never pulled out for social studies assessments.

Regarding the accommodations used, presentation accommodations were reported as follow: 73% of teachers and 87% of administrators reported presenting instructions orally, 64% of teachers and 81% of administrators reported providing special test preparation, 70% of teachers and 92% of administrators reported providing material in large print, 71% of teachers and 80% of administrators reported reducing the number of items per page or line, 54% of teachers and 73% of administrators reported providing on-task/focusing prompts, 50% of teachers and 65% of administrators reported providing a designated reader, and 49% of teachers and 64% of administrators reported allowing subtests to be taken in a different order. Responses accommodations were reported as follow: 18% of teachers and 37% of administrators reported permitting responses to be given via computer, 52% of teachers and 78% of administrators reported allowing verbal responses, 21% of teachers and 34% of administrators reported allowing the use of spelling and grammar assistive devices, 24% of teachers and 42% of administrators reported allowing answers to be dictated to a scribe, 38% of teachers and 63% of administrators reported allowing the use of calculators, 10% of teachers and 17% of administrators reported allowing the use of a tape recorder to capture responses.

Setting accommodations were reported as follow: 52% of teachers and 66% of administrators reported administering tests in small group settings, 53% of teachers and 73% of
administrators reported administering tests in a private room or alternate test site, 39% of teachers and 55% of administrators reported providing preferential seating, 21% of teachers and 28% of administrators reported providing special lighting, and 62% of teachers and 83% of administrators reported providing a space with minimal distractions. Timing accommodations were reported as follow: 42% of teachers and 67% of administrators reported allowing frequent brakes, 39% of teachers and 65% of administrators reported administering tests in several timed sessions or over several days, and 79% of teachers and 94% of administrators reported allowing extended time.

Teachers' comparisons according to their educational level, teaching level and teaching assignment did not reveal any significant differences. Interestingly, the lack of significant difference between special education and regular education teachers in their assessments of students with learning disabilities might be attributed to the wave of inclusive education that has been submerging the country's special education initiatives in the last fifteen years (e.g. the National Inclusion Project). Special education and regular education teachers are then considered as one professional entity with similar skills in assessments for both learning disabled and non-disabled students. Even though the high percentages of assessment pull outs in core subjects might contradict these inclusive efforts, it appeared that a high percentage of special education and regular education teachers were mostly employing accommodations related to the presentation of the assessment material. Accommodations related to timing, setting and responses ought to be used more frequently.

Teachers' comparisons according to the district revealed a significant difference. It appeared that teachers in Northern schools use significantly less accommodations than their
colleagues in Southern schools.Administrators' comparisons according to their educational level, position, and district did not reveal any significant differences.

Teachers and administrators' comparisons did not reveal significant effects for the educational level and gender, but revealed significant main effects for the group and district. It appeared that administrators reported much more use of accommodations than teachers did. This result could be an alarming sign for an important gap between the assessment practices that administrators think are taking place at their school and what teachers report they are actually doing. Additionally, it appeared that teachers and administrators in Northern schools use significantly less accommodations than their colleagues in Beirut, Mount Lebanon, and Southern schools. Furthermore, teachers and administrators in the Bekaa use significantly less accommodations than their counterparts in Southern schools.

Product Evaluation - What impact do assessment practices have?

Impact.

Sixty-one percent of teachers reported that student assessment had a positive impact on changes in the instructional methods used, 68% of teachers and 63% of administrators reported that student assessment had a positive impact on students' achievements, 84% of teachers and 97% of administrators reported that student assessment had a positive to very positive impact on students' assessment plans, policies or processes, and 77% of teachers and 88% of administrators reported that student assessment had a positive impact on resources allocations. Lastly, 80% of teachers and 80% of administrators reported positive to very positive impact of student assessment in hiring specialists.

Teachers' comparisons revealed a significant difference in teachers' perceived impact that student assessment has when compared according to their teaching assignment. There was a significant difference between special education and regular education teachers regarding hiring specialists. Special educators saw a more positive impact for hiring specialists on student assessment. This is possibly due to the nature of collaboration that special education teachers perform being part of a larger multidisciplinary team than their regular education colleagues. Collaborations might include physical therapists, speech therapists, occupational therapists, outside testing agencies... In many instances, special educators are made part of the interviewing process when hiring new specialists which makes them more involved and aware of hiring activities at the school.

Additional teachers' comparisons according to their educational level, district, and teaching level did not reveal any significant differences.Administrators' comparisons did not reveal any significant differences in their perceived impact of student assessment according to their educational level, position or district.

Teachers and administrators comparisons did not reveal any significant differences according to the district or educational level. A significant difference was recorded when they were compared according to their gender where a significant main effect for the group was recorded. Administrators' responses reflected a significantly more positive perceived impact of student assessment than teachers.

Summary

The general Lebanese context in which students with learning disabilities are assessed is marked by a critical gender imbalance with a very high female dominance. An important disparity in schools' distribution exists within the five districts, with the highest concentration of schools in Beirut, the capital and the lowest in the Bekaa Valley. The majority of teachers and administrators hold bachelor degrees, in addition to a number with only high school degrees most likely hired due to recruiting difficulties. The vast majority of special education services exist at the elementary level, with a steady decline of their availability once students reach middle and high school. Administrators in Lebanese private schools report that the content of their schools' assessments bares a strong emphasis on basic skills, cognitive, affective, and social development and student satisfaction and involvement at the school, versus a moderate emphasis on vocational skills. They report that their schools' missions and policies are aligned with assessments' best practices and record positive attitudes toward students' assessment. However, there is noticeable lack of freedom for teachers to implement their own assessment approaches, raising questions about the extent of teachers' involvement in the schools' decision making process. In terms of ethical assessment practices, teachers and administrators seem to be in a significant violation of the accuracy standard, overstating or understating the learner's true level of knowledge and understanding, with significant variations of practices among the districts.

Input evaluation revealed that almost half of the teachers and administrators in Lebanese private schools feel ill prepared in assessing student performance as a result of their teacher education program. But since a considerable number reports attending in service trainings related to student assessment, especially teachers located in the Bekaa Valley, their feelings improve to report being "well prepared" in assessing student performance. Regarding their involvement in
student assessment, administrators are significantly more involved in student assessment than teachers. Teachers report being more involved in tangible assessment tasks directly related to the student, with significant differences when compared according to their educational level and according to the district. Administrators report being more involved in the various assessment aspects of the institution, with significant more involvement of principals and department heads. Higher educational level seems to also play a role. Teachers and administrators holding an $\mathrm{EdD} / \mathrm{PhD}$ seem to register a higher involvement in student assessment.

Process evaluation revealed that even though special education teachers in Lebanese private schools thought that alternative assessments were important, some of their assessment practices are still imprinted with traditional methods. Significant differences among districts reveal the most use of alternative assessment practices by teachers in the Bekaa valley, and the least use of those practices by teachers in the South of Lebanon. Northern teachers report the most use of traditional assessment practices. Furthermore, Lebanese teachers seem to be on board with Assessment for Learning practices with a significant difference between special education and general education teachers in a monitoring and a scaffolding practice. Regarding the assessment of students with learning disabilities, almost half of the teachers and administrators report pull out practices during assessments in English or French Language Arts, Arabic and Math. Accommodations used are mostly related to the presentation of the assessment material, with less frequent uses of timing, setting and responses accommodations. Teachers and administrators in Northern schools appear to use significantly less accommodations than their colleagues in the other districts. Moreover, administrators report much more use of accommodations than teachers do, implicating an important gap between what administrators think is taking place and what teachers report they are actually doing.

Product evaluation revealed that teachers and administrators' perceived impact of student assessment is positive on the various aspects of the school. Special educators perceive a more positive impact on hiring specialists than regular educators do. Comparisons between teachers and administrators reveal a significant difference according to the group. Administrators report a more positive perception of the impact that student assessment has at their school than teachers.

Recommendations

This study represents the first stepping stone in building a comprehensive picture for assessment practices of students with learning disabilities in Lebanese private schools,in a country lacking a clear vision for the whole educational sector in general (Karam, 2006), and for the special education section in particular. Overwhelmed with the absence of organizations collecting reliable assessment information useful for national or international research, this study comes to give a general national overview of current assessment practices of students with learning disabilities.Believing in the concept that good assessments promote learning and motivate both teachers and students, whereas poor assessments narrow the curriculum, de-skill, and demotivate teachers and frustrate students, there is an immanent need to further investigate classroom assessment practices and relate their pedagogical implications to policy makers and interested parties. The development of sound pedagogical assessment practices is a never-ending process that involves ongoing review and refinement (Elwood \& Klenowski, 2002). Further classroom observations are needed to compare and contrast with survey responses and obtain a wider range of evidence related to classroom assessment practices of student with learning disabilities in Lebanese private schools.

APPENDIX A

Teacher's Assessment Practices Survey

Teccher's Ansessment practices suruey

The purpose of this survey is to collect information about your current assessment practices for students with learning disabilities.

Section 1: Demographics
Please answer the following questions:

1. What is your gender?
A. Female
B. Male
2. How old are you? \qquad
3. What is your highest degree? (Please circle only one)
A. High school diploma or equivalent
B. Bachelors
C. Teaching diploma
D. Masters
E. EdD/PhD
F. Other (Please specify) \qquad
4. Which isyour current teaching level?
A. Elementary
B. Middle
C. High school
5. Which is your current teaching assignment? (Please check only one)
A. Special education
B. Other (please specify)
6. Including the current school year, how many years of teaching experience do you have?

Section 2: Traditional and Alternative Assessments
Please answer questions 1 through 5 by checking the appropriate box:

1. Compared to alternative assessments, how oftendo you use paper-and-pencil tests?
2. With respect to paper-and-pencil tests, how often do you createyourownratherthan use tests that are providedwith curriculum materials?
3. With respect to paper-and-pencil tests, how often do you use tests providedwith curriculum materialratherthancreateyourown?

Never	Not veryOft en	Half the Time	Most of the Time	Always

4. With respect to paper-and-pencil tests, how often do you use the following types of written test items to assessstudentlearning?
a. True/false (or otheralternate-choice)?
b. Multiple choice?
c. Fill in the blank?
d. Short answer?
e. Essay?

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

5. Whenusingpaper-and-pencil tests, how often do you:
a. Calculatemeans and standard deviations for your tests?
b. Estimatereliability for your tests?
c. Conduct item analyses (e.g. item difficulty, item discrimination, etc.) to determine how wellindividual items worked?

Please answer questions 6 through 10 by checking the appropriate box:
6. Compared to alternative assessments, how important do youthinkpaper-and-pencil tests are?
7. With respect to paper-and-pencil tests, how important it is to createyourownratherthan use tests that are provided with curriculum materials?
8. With respect to paper-and-pencil tests, how important it is to use tests provided with curriculum materia Irather than create your own?

Not at all important	Not important	Moderately important	Important	Very important

9. With respect to paper-and-pencil tests, how important it is to use the following types of written test items to assess student learning?
a. True/false (or other alternate-choice)?
b. Multiple choice?
c. Completion?
d. Short answer?
e. Essay?
10. When using paper-and-pencil tests, how important it is to:
a. Calculate means and standard deviations for your tests?
b. Estimate reliability for your tests?
c. Conduct item analyses (e.g., item difficulty, item discrimination, etc.) to determine how wellindividual items worked?

Please answer questions 11 through 15 by checking the appropriate box:

	Never	Not very Often	Half the Time	Most of the Time	Always
11. Compared to traditional assessments, how often do you use alternative assessments?					
12. With respect to performance assessments and portfolios, how often do you create your own rather than use assessments that are provided with curriculum materials?					
13. With respect to performance assessments and portfolios, how often do you use assessments provided with curriculum material rather than create your own?					

14. With respect to alternative assessments, how often do you use the following types of assessments to assess student learning?
a. Informal observations and questions?
b. Portfolios?
c. Exhibitions/presentations/recitals?
d. Performance assessments (e.g., projects)?
15. When using alternative assessments, how often do you estimate reliability for your assessments?

Please answer questions 16 through 20 by checking the appropriate box:

	Not at all important	Not important	Moderately important	Important	$\begin{gathered}\text { Very } \\ \text { important }\end{gathered}$
16. Compared to traditional assessments, how important do you think alternative assessments are?					
17. With respect to performance assessments and portfolios, how important is it to create your own rather than use assessments that are provided with curriculum materials?					
18. With respect to performance assessments and portfolios, how important it is to use assessments provided with curriculum material rather than create your own?					

19. With respect to alternative assessments, how important it is to use the following types of assessments to assess student learning?
a. Informal observations and questions?
b. Portfolios?
c. Exhibitions/presentations/recitals?
d. Performance assessments (e.g., projects)?
20. When using alternative assessments, how important it is to estimate reliability for your assessments?

Section 3: Assessment for Learning

Please answer questions 20 through 31 by checking the appropriate box:

	Strongly Disagree	Disagree	Neutral	Agree	Strongly Disagree
21. I encourage my students to reflect upon how they can improve their assignments.					
22. After a test, I discuss the answers given with each student.					
23. While working on their assignments, I ask my students how they think they are doing.					
24. I ask my students to indicate what went well and what went badly concerning their assignments.					
25. I encourage students to reflect upon their learning processes and how to improve their learning.					
26. After an assessment, I inform my students on how to improve their weak points.					

27. During my class, students are given the opportunity to show what they have learned.
28. I ask questions in a way my students understand.
29. By asking questions during class, I help my students gain understanding of the content taught.
30. I allow my students to ask each other questions during class.
31. I give my students opportunities to ask questions.
32. My students know what the evaluation criteria for their work are.

Section 4: Ethical Assessment Practices
Please rate the following practices:
33. A teacher states how she will grade a task when she assigns it
34. A Math teacher gives a student an F for the course because the student missed the final exam.
35. To encourage lively discussion in English III, a teacher counts class participation as 30% of the final grade.
36. A teacher who knows a student had a bad week because of problems at home bumps the student's participation grade up a few points to compensate for his bad score on a quiz.
37. A teacher considers student effort when determining grades.
38. A teacher lowers report card grades for disruptive behavior.

Section 5: Preparation and Training

Please answer questions 39 through 41 by circling your answer:
39. How would you describe your level of preparation in terms of assessing student performance that resulted from your teacher education program?
A. Not at all prepared
D. Somewhat prepared
B. Not very prepared
E. Well prepared
C. Slightly prepared
40. Within the last 3 years, have you attended in-service training sessions/workshops where the assessment of student performance was the main topic?
A. Yes
B. No
41. How would you describe your current level of preparation in terms of assessing student performance?
A. Not at all prepared
D. Somewhat prepared
B. Not very prepared
E. Well prepared
C. Slightly prepared

Section 6: Involvement in Student Assessment

Please rate your personal involvement in the following activities related to student assessment at your school. (Check one for each)

	Not Involved	Moderatelyl nuolved	Involved	Highlylnv olved	VeryHighl ylnvolved
42. Creating new assessment techniques					
43. Participation in program review, curricular evaluation, or planning activities using student assessment results					
44. Serving on school-wide committee on student assessment					
45. Setting assessment policy for the school					

Section 7: Impact
What impact has student assessment information had on the following (Check one for each):

	Very Negative	Negative	None	Positive	VeryPositi ve
46. Changes in instructional or teaching methods used					
47. Students' Achievement					
48. Student assessment plans, policies, or processes					
49. Resource allocation					
50. Hiring specialists					

51. At your school, students with learning disabilities complete the subject assessments with their peers, in the general education classroom.
A. Yes
B. No

If the answer is yes, proceed to question 53. If the answer is no, proceed to question 52.
52. At your school, students with learning disabilities are pulled out from the general education classroom to complete assessments in the following subjects:

	Never	Occasionally	Half the time	Most of the time	All the time
English/French Language					
Arabic Language					
Math					
Science					
Social Studies					
Other (please specify)					
Other (please specify)					

53. Check all applicable accommodations used at your school when assessing students with learning disabilities.

	OProvide in large print
OPresent instructions	OAllow for verbal orally
responses	

Reduce number of items per page or line
Allow for answers to be dictated to a scribe

OAllow the use of calculator

OProvide special lighting
OAdminister a test in several timed sessions or over several days

Provide a designated reader
OAllow the use of a tape recorder to capture responses

OAllow extended time
OProvide a space with minimal distractions
OAllow subtests to be taken in a different order

OProvide on-task/focusing prompts

APPENDIX B

Administrator's Assessment Practices Survey

Acministratorss Ansesment Practices Survey

The purpose of this survey is to collect information about your school's assessment practices.
Section 1: Demographics
Please answer the following questions:

1. What is your gender?
A. Female
B. Male
2. How old are you? \qquad
3. What is your highest degree? (Please circle only one)
G. High school diploma or equivalent
H. Bachelors
I. Teaching diploma
J. Masters
K. EdD/PhD
L. Other (Please specify) \qquad
4. Which is your current position? (Please check only one)
A. School Principal
B. Assistant principal
C. Coordinator
D. Department head
E. Other (Please specify) \qquad
5. How many years of teaching experience do you have? \qquad
6. How long have you been an administrator? \qquad

Section 2: Content of Student Assessment

Please rate the emphasis placed by your school on the following areas of student assessment (Check one for each)

	None	Little	Moderate	Strong	Very Strong
1. Basic skills					
2. Cognitive development (high-order skills, general education competencies, competence in core subjects)					
3. Affective development (values, attitudes, personal growth, etc.)					
4. Social development (political, social or community involvement)					
5. Vocational or professional skills or competences					
6. Student satisfaction and involvement with the school					

Section 3: Methods of Assessment

In its student assessment efforts, to what extent does your school emphasize the following methods of collecting student assessment data? (Check one for each)

	None	Little	Moderate	Strong	Very Strong
7. School developed instruments or tests					
8. Commercial instruments or tests					
9. Student performance methods (observation of student performance or demonstrations, portfolios)					

Section 4: School's Mission Components

To what extent are the following components priorities in your school's mission? (Check one for each)

	Very Low	Low	Moderate	High	Very High
10. Assessment of student learning					
11. Identifying clear educational outcomes expected of students					
12. Interdisciplinary teaching					
13. Alternative delivery systems (experiential learning, learning communities...)					
14. Innovative instructional methods (peer teaching, cooperative learning, collaborative learning...)					

Schools have adopted a variety of intentional policies and practices to support student assessment. From your perspective, how important does your school considers the following policies and or practices in encouraging student assessment activities? (Check one for each)

Section 6: Attitudes toward Assessment

Please describe how you feel about the following statements regarding student assessment at your school. (Check one for each)

	$\begin{aligned} & \text { Strongly } \\ & \text { Sisagree } \end{aligned}$	Disagree	Neutral	Agree	Strongly Agree
23. Teachers are free to implement their own approaches to student assessment.					
24. Teachers have a common understanding of the meaning of the term student assessment					
25. Administrators have a common understanding of the meaning of the term student assessment					
26. Student assessment has improved the quality of education at the school					
27. Students today are learning more due to a school focus on assessment of student learning					
28. Student assessment techniques accurately measure students learning					
29. The effectiveness of teaching is enhanced when teachers regularly engage in student assessment					
30. Teachers are expected to use student assessment information to modify how and what they teach					
31. Teachers and administrators agree on the value of assessing student learning					
32. Assessing students has resulted in the development of learning experiences that better meet diverse learning styles.					

Section 7: Involvement in Student Assessment
Please rate your personal involvement in the following activities related to student assessment at your school. (Check one for each)
33. Creating new assessment techniques
34. Participation in program review, curricular evaluation, or planning activities using student assessment results
35. Serving on school-wide committee on student assessment
36. Setting assessment policy for the school

Not Involved	Moderatelyl nuolved	Involved	Highlylnv olved	VeryHighl ylnvolved

Section 8: Ethical Assessment Practices

Please rate the following practices:
37. A teacher states how she will grade a task when she assigns it
38. A Math teacher gives a student an F for the course because the student missed the final exam.
39. To encourage lively discussion in English III, a teacher counts class participation as 30% of the final grade.
40. A teacher who knows a student had a bad week because of problems at home bumps the student's participation grade up a few points to compensate for his bad score on a quiz.
41. A teacher considers student effort when determining grades.
42. A teacher lowers report card grades for disruptive behavior.

Please answer questions 43 through 45 by circling your answer:
43. How would you describe your level of preparation in terms of assessing student performance that resulted from your teacher education program?
F. Not at all prepared
D. Somewhat prepared
G. Not very prepared
E. Well prepared
H. Slightly prepared
44. Within the last 3 years, have you attended in-service training sessions/workshops where the assessment of student performance was the main topic?
C. Yes
D. No
45. How would you describe your current level of preparation in terms of assessing student performance?
D. Not at all prepared
I. Somewhat prepared
E. Not very prepared
J. Well prepared
F. Slightly prepared

Section 10: Impact
What impact has student assessment information had on the following (Check one for each):

	Very Negative	Negative	None	Positive	VeryPositi ve
46. Changes in instructional or teaching methods used					
47. Students' Achievement					
48. Student assessment plans, policies, or processes					
49. Resource allocation					
50. Hiring specialists					

51. At your school, students with learning disabilities complete the subject assessments with their peers, in the general education classroom.
B. Yes B. No

If the answer is yes, proceed to question 53.
If the answer is no, proceed to question 52.
52. At your school, students with learning disabilities are pulled out from the general education classroom to complete assessments in the following subjects:

	Never	Occasionally	Half the time	Most of the time	All the time
English/French Language					
Arabic Language					
Math					
Science					
Social Studies					
Other (please specify)					
Other (please specify)					

53. Check all applicable accommodations used at your school when assessing students with learning disabilities.

Oresent instructions orally

Permit responses to be given via computer

Administer a test in small group settingAdminister a test in private room or alternate test site

Provide special test preparation responses seating

Provide in large print
Allow for verbal

Allow the use of spelling and grammar assistive devices
O Provide preferential

Allow frequent breaks
Administer a test in several timed sessions or over several days
Allow the use of calculator

Provide special lighting

Provide a designated reader
Allow the use of a tape recorder to capture responses

Provide a space with minimal distractions Allow subtests to be taken in a different order

Provide on-task/focusing prompts

APPENDIX C

Permission to use the TAFL-Q

Sent email:

From: Rasha Elhage
Sent: Monday 15 July 2013 9:26
To: Tillema, Harm; Pat El, R.J.; Vedder, Paul
Cc: Shlomo Sawilowsky
Subject: Permission to use TAFL-Q
Dear Drs.

My name is Rasha ElSaheli Elhage. I am currently completing a PhD in Educational Evaluation and Research at Wayne State University, Michigan USA. My dissertation topic discusses assessment practices of students with learning disabilities in Lebanese private schools. I would like to use the "Teachers' Assessment for Learning" questionnaire to survey teachers and collect data about their assessment practices.

I am kindly asking for your permission to use your questionnaire for my study. I will be making minor changes to the survey to be able to administer it to school administrators as well.

Looking forward to hearing from you.

Sincerely,

Rasha ElSaheli Elhage

Response

RE: Permission to use TAFL-Q

From :Pat El, R.J. (RPatEl@FSW.leidenuniv.nl)

Date: 7/15/13

To: 'Rasha Elhage', Tillema, Harm, Vedder, Paul
Cc: Shlomo Sawilowsky

Dear Rasha ElSaheli Elhage,
Thank you for your interest in our questionnaire. Feel free to use it for your research. If you have any questions I will be happy to answer them for you.

Best wishes,
Dr. Ron Pat-El

APPENDIX D

Permission to use the Ohio Teacher Assessment Practices Survey

Sent email:

From: Rasha Elhage
Sent: Monday 15 July 2013 9:26
To: Mertler, Craig.craig.mertler@gmail.com
Cc: Shlomo Sawilowsky(professorshlomo@gmail.com)
Subject: Permission to use the Ohio Teacher Assessment Practices Survey

Dear Dr. Mertler,
My name is Rasha ElSaheli Elhage. I am currently completing a PhD in Educational Evaluation and Research at Wayne State University, Michigan USA. My dissertation topic discusses assessment practices of students with learning disabilities in Lebanese private schools. I would like to use the "Ohio Teacher Assessment Practices Survey" to collect data about teachers' assessment practices.

I am kindly asking for your permission to use your survey for my study. I will be making minor changes to the survey to be able to administer it to school administrators as well.

Looking forward to hearing from you.

Sincerely,

Rasha ElSaheli Elhage

Response:

From: craig.mertler@ gmail.com
Subject: Re: Permission to use the "Ohio Teacher Assessment Practices Survey"
Date: Tue, 16 Jul 2013 07:04:11-0400
To: rashaelhage77@hotmail.com

Hello,
You have my permission to use the instrument in your dissertation research. All I ask is that you please cite me accordingly and appropriately.

Thank you and good luck!
DR. CRAIG A. MERTLER
www.about.me/craigmertler

REFERENCES

Afifi, M.M (2005). Mental Health Publications from the Arab World Cited in PubMed, 19872002. Eastern Mediterranean Health Journal, (Vol. 11, (3)). World Health Organization. Regional Office for the Eastern Mediterranean.

Airasian, P. (2005). Assessment in the classroom: A concise approach (2nd Ed.). Boston, MA: McGraw-Hill Company.

Akkari A. (2004). Education in the Middle East and North Africa: The Current Situation and Future Challenges. International Education Journal, (Vol. 5, (2)).

Al-Khathami, A.D. (2012). Evaluation of Saudi Family Medicine Training Program: The Application of CIPP Evaluation Format. Saudi Arabia: Saudi Postgraduate Family Medicine Program Centers.

Ammons, M. (1964). Purpose and Program: How does Commitment Today Differ from that in Other Periods. Educational Leadership, (Vol. 22, (15)).

Anderson, R.S. (1998). Why Talk About Different Ways to Grade? The Shift from Traditional Assessment to Alternative Assessment.New Directions for Teaching and Learning, (Vol. 74, pp. 5-16).

Antoniou, A. S., Polychroni, F., \&Vlachakis, A. N. (2006).Gender and age differences in occupational stress and professional burnout between primary and high-school teachers in Greece.Journal of Managerial Psychology, 21(7), 682-690.

Arab Resource Collective (2007).Comparative regional analysis of ECCE in four Arab countries (Lebanon, Jordan, Syria, and Sudan). Paper commissioned for the EFA Global Monitoring Report 2007, Strong foundations: Early childhood care and education.

ASCD (1957).Committee on Platform of Beliefs, Educational Leadership.(pp. 232-233)

Assessment Reform Group (1999). Assessment for Learning: Beyond the Black Box. Cambridge: University of Cambridge.

Assessment Reform Group (2002). Assessment for Learning: 10 Principles. Research Based Principles to Guide Classroom Practice. Retrieved February 10, 2013, from http://www.uni-koeln.de/hf/konstrukt/didaktik/benotung/assessment_basis.pdf

Bashshur, M. (2002).Cooperation Symposium between Educational Institutions to Improve the Quality of Education in Lebanon.Twinning between Schools for Educational Reform from the base. Lebanese National Commission for Education, Science and Culture (UNESCO), Beirut, Lebanon: Modern Printing Center.

Bauer, L.; Olgeirsson, G.; Pereira, F.; Pluhar, C.; \& Snell, P. (2003). Key Principles for Special Needs Education: Recommendations for Policy Makers. In A. Watkins (Ed.), European Agency for Development in Special Needs Education

Belanoff, P., and Dickson, M. (eds.) (1991). Portfolios: Process and Product. Portsmouth, N.H.: Heinemann.

Biesta, G. (2009). Good Education in an Age of Measurement: On the Need to Reconnect with the Question of Purpose in Education. EducAsseEvalAcc, 21, pp. 33-46.

Birenbaum, M., Breuer, K., Cascallar, E., Dochy, F., Dori, Y., \& Ridgway J. (2006). A Learning Integrated Assessment System. Educational Research Review, 1, pp. 61-67.

Black P., Harrison,C., Lee, C., Marshall, B., \& William, D. (2004).Working Inside the Black Box: Assessment for Learning in the Classroom. Phi Delta Kappan, 86, pp. 8-21.

Black, P. \& William, D. (1998b).Inside the Black Box: Raising Standards through Classroom Assessment. London: King's College.

Black, P.\& William, D. (2001).Formative Assessment and Science Education. Norwell, MA: Kluwer.

Black, P. \& William, D (2003). In Praise of Educational Research: Formative Assessment. British Educational Research Journal, 29(5), pp. 623-637.

Boston, C. (2002). The Concept of Formative Assessment.Practical Assessment Research and Evaluation.Retrieved from http://pareonline.net/getvn.asp?v=8\&n=9 on February 10, 2013.

Browder, D., Flowers, C., Ahlgrim-Delzell, L., Karvonen, M., Spooner, F.,\&Algozzine, R. (2004).The Alignment of Alternate Assessment Content with Academic and Functional Curricula.The Journal of Special Education, 37 (4), pp. 211-223.

Brown, G. T. L. (2002). Teachers' conceptions of assessment.Unpublished dissertation, New Zealand, University of Auckland.

Brown, G.T.L. (2006). Teachers' Conceptions of Assessment: Validation of an Abridged Version. Psychological reports, 99, pp. 166-170

Brown, G.T.L., \& Hirschfeld, G.H.F. (2008). Students’ Conceptions of Assessment: Links to Outcomes. Assessment in Education: Principles, Policy \& Practice, 15 (1), pp. 3-17

Brown, G.T.L.; Irving, S.E.; Peterson, E.R.; \& Hirschfeld G.H.F. (2009). Use of InformalInteractive Assessment Practices: New Zealand Secondary Students' Conceptions of Assessment. Learning \& Instruction, 19 (2), pp. 97-111

Brown, G.T.L.; Kennedy, K.J.; Fok, P.K.; Kin San Chan, J.; \&Ming Yu, W. (2009). Assessment for Student Improvement: Understanding Hong Kong Teachers' Conceptions and Practices of Assessment. Assessment in Education: Principles, Policy and Practice, 16 (3), pp. 347363

Braun, H., \&Kanjee, A. N. I. L. (2006).Using assessment to improve education in developing nations.Improving education through assessment, innovation, and evaluation, 1-46.

Bryan, T. (2005).Science-based Advances in the Social Domain of Learning Disabilities.Learning Disability Quarterly, 28, 119-121.

Byrne, B. M., Leong, F.T.L., Hambleton, R.K., Oakland, T., Van de Vijver, F.J.R., Cheung, F.M., \& Bartram, D. (2009). A Critical Analysis of Cross-Cultural Research and Testing Practices: Implications for Improved Education and Training in Psychology. Training and Education in Professional Psychology, 3 (2), pp. 94-105

Caffrey, E., Fuchs, D., \& Fuchs, L. S. (2008). The Predictive Validity of Dynamic Assessment: A Review. The Journal of Special Education, 41(4), pp. 254-270.

Carpenter, D. M. (2005).Presidential rhetoric and the purpose of American education.Educational Forum, 69(3), 278-290.

CERD, Center of Educational Research and Development, 2010.
http://crdp.org/CRDP/Arabic/arstatistics/STAT_AR/2009_2010/statistics20092010_Ar.ht m

Central Administration of Statistics (1997).Population and Housing Data Survey. Beirut

Cheung, D. (2002) Refining a stage model for studying teacher concerns about educational innovations, Australian Journal of Education, 46(3), 305-322.

Chien, M.; Lee, C.; \& Cheng, Y. (2007). The construction of Taiwan's educational indicator systems: Experiences and Implications. Educational Research for Policy and Practice, 6 (3), 249-259.

Cizek, G. J., Fitzgerald, S.M., \&Rachor, R. E. (1996). Teachers' Assessment Practices: Preparation, Isolation, and the Kitchen Sink. Educational Assessment, 3 (2), pp. 159-179

Cizek, G.J., Fitzgerald, S., Shawn, M. \&Rachor, R.E. (1995). Teachers’ Assessment Practices: Preparation, Isolation and the Kitchen Sink, Educational Assessment, 3, pp. 159-179.

Clotfelter, C. T., Ladd, H. F., \&Vigdor, J. L. (2007). Teacher credentials and student achievement: Longitudinal analysis with student fixed effects. Economics of Education Review, 26(6), 673-682.

Clotfelter, C. T., Ladd, H. F., \&Vigdor, J. L. (2010). Teacher credentials and student achievement in high school a cross-subject analysis with student fixed effects. Journal of Human Resources, 45(3), 655-681.

Cohen, J. (1969). Statistical Power Analysis for the Behavioral Sciences. New York: Academic Press.

Conderman, G., \& Hedin, L. (2012).Purposeful Assessment Practices for Co-Teachers.Teaching Exceptional Children, 44 (4), pp. 19-27.

Council of Chief State School Officers.(2008). Attributes of Effective Formative Assessment. Washington, DC:CCSSO FAST-SCASS.

Crisp, G. T. (2012). Integrative Assessment: Reframing Assessment Practice for Current and Future Learning. Assessment and Evaluation in Higher Education, 37 (1), pp. 33-43.

Crooks, T. (1998).The impact of Classroom Evaluation Practices on Students.Review of Educational Research, 58, pp. 438-481.

CSO, Civil Society Organization (2010) Presentation of the Commitments and the Obligations concerning People with Disability. Paper submitted to the Office of the High Commissioner for Human Rights on the occasion of the $9^{\text {th }}$ Session of the Universal Periodic Review, Lebanon.

Darling-Hammond, L. (1994).Setting Standards for Students: The Case for Authentic Assessment.The Educational Forum, 59 (1), 14-21.

Dee, T.S. (2006). The Why Chromosome: How a Teacher's Gender Affects Boys and Girls. Education Next, 6(4), 68-75.

Dewey, J. (1934). Individual Psychology and Education.The Philosopher, 12, 1-6.

Dewey, J. (1963). Experience and education. New York: Macmillan.

Dikli, S. (2003). Assessment at a distance: Traditional vs. alternative assessments. The Turkish Online Journal of Educational Technology, 2(3), pp. 13-19.

Dirani L.A. (1998). School Integration of Handicapped Children (L'integration Scolaire des Enfants Handicapes). Institut Libanais d'Educateurs, Universite Saint Joseph. Unpublished research paper.

Duncan, C. R. \& Noonan, B. (2007).Factors Affecting Teachers' Grading and Assessment Practices.Alberta Journal of Educational Research, 53(1), pp. 1-31.

Educational Testing Service. (2003). Linking Classroom Assessment with Student Learning. Retrieved on July 29, 2012 from www.ets.org.

El-Baz, F. (2007). Reform in Arab Countries: The Role of Education. Retrieved from http://www.strategicforesight.com/iwforum/farouk.htm on December 52011.

Elhoweris, H., Alsheikh, N., \&Haq, F. S. (2011). Reading Strategies among UAE Students with Learning Disabilities.International Journal of Business and Social Science, 2(16), pp. 279288.

Elwan, A. (1998) Poverty and Disability: A Survey of the Literature. Washington DC: World Bank.

Elwood, J. L. \& Klenowski, V. (2002).Creating Communities of Shared Practice: The Challenges of Assessment use in Learning and Teaching.Assessment and Evaluation in Higher education, 27(3), pp. 243-256.

ElZein, H.L. (2009) Attitudes toward Inclusion of Children with Special Needs in Regular Schools (A Case Study from Parents' Perspective).Educational Research and Review, 4(4), 164-172.

Felix, J.L. (1979). Research and Evaluation to Improve Instruction: The Cincinnati Strategy. Educational Evaluation and Policy Analysis, 1 (2), 57-62.

Filmer, D. (2008). Disability, Poverty, and Schooling in Developing Countries: Results from 14 Household Surveys. The World Bank Economic review, 22(1), pp. 141-163.

Fisher, B.L., Allen, R., \&Kose, G. (1996). The Relationship Between Anxiety and ProblemSolving Skills in Children with and without Learning Disabilities. Journal of Learning Disabilities, 29, 439-446.

Frame, T.M. \& Frame, M.J. (2008). Helping Schools Measure Up. Retrieved June 27, 2013 from http://mooreschool.sc.edu

Frey, B. B. \& Schmitt, V. L. (2010). Teacher's Classroom Assessment Practices. Middle Grades Research Journal, 5(3), pp. 107-117

Gersten, R., Fuchs, L. S., Compton, D., Coyne, M., Greenwood, C., \& Innocenti, M. S. (2005) Quality Indicators for Group Experimental and Quasi-Experimental Research in Special Education.Exceptional Children, 71 (2), pp. 149-164

Gibbs, G. (1999). Using Assessment to Strategic Change the Way Students Learn. In S. Brown and A. Glasner (Ed.), Assessment Matters in Higher Education: Choosing and Using Diverse Approaches (pp. 41-53). Buckingham, UK: Society for Research into Higher Education and Open University Press.

Goodlad, J. I. (1984). A place called school. New York: McGraw-Hill.

Green, M.; Ellis, C.; Fremont, P.; Batty, H. (1998). Faculty Evaluation in Departments of Family Medicine: Do Our Universities Measure Up? Med Edu, 32 (12), pp. 596-606.

Guerra-Lopez, I. J. (2008). Performance Evaluation: Proven Approaches for Improving Program and Organizational Performance (Vol. 21). Josssey-Bass

Gullickson, A.R. (2005) Student Evaluation Standards: A Paradigm Shift for the Evaluation of Students. Prospects: Quarterly Review of Comparative Education, 35 (2), pp. 231-22

Guralnick, M. J. (1999). Second-Generation Research in the Field of Early Intervention. In M. Guralnick (Ed.), The effectiveness of early intervention (pp. 3-22). Baltimore, MD: Paul Brookes.

Guskey, T.R. (1994). Making the Grade: What Benefits Students? Educational Leadership, 52(2), pp.14-20.

Guskey, T.R. (1994). How Classroom Assessments Improve Learning. Educational Leadership, 60(5), pp. 6-11.

Haladyna, T. M., Nolan, S. B., \& Haas, N. S. (1991).Raising Standardized Achievement Test Scores and the Origins of Test Score Pollution. Educational Researcher, 20 (2), pp. 1-7.

Hargreaves, A., Earl, L, \& Schmidt, M. (2002) Perspectives on alternative assessment reform,American Educational Research Journal, 39(1), 69-95.

Harris, K. \& James, R. (2006).Facilitating Reflection on Assessment Policies and Practices: A Planning Framework for Educative Review of Assessment.Studies in Learning, Evaluation, Innovation and Development, 3(2), 23-36.

Hatoum, R. J. (2010). Educating Children with Down Syndrome in Lebanon: An Exploratory Study of Urban Mothers' Perspective.

Herman, J., Osmundson, E., Ayala, C., Schneider, S., \&Timms, M. (2006).The Nature and Impact of Teachers' Formative Assessment Practices (CSE Technical Rep. No. 703). Los Angeles, CA: National Center for Research on Evaluation, Standards, and Student Testing.

Huntington, D.D., \& Bender, W.N. (1993).Adolescents with Learning Disabilities at Risk? Emotional Well Being, Depression, Suicide. Journal of Learning Disabilities, 26, 159166.

ITC Guidelines. Retrieved on November 1rst 2011 from http://www.intestcom.org/itc_projects.htm

James, P. (1993). Performance Assessment and Special Education: Practices and Prospects. Focus on Exceptional Children, 26 (1), pp. 1-20

Kalyanpur, M. \& Harry, B. (1999).Culture in Special Education: Building Reciprocal FamilyProfessional Relationships. Baltimore, MD: Brookes Publishing.

Kane, M. B., and Mitchell, R. (eds.) (1996).Implementing Performance Assessment: Promises, Problems, and Challenges. N.J.: Lawrence Erlbaum

Kaplan, B.J., Dewey, D.M., Crawford, S., \& Wilson, B.N. (2001). The Term Comorbidity is of Questionable Value in Reference to Developmental Disorders: Data and Theory. Journal of Learning Disabilities, 34, 555-565.

Karam, G. (2006). Vocational and Technical Education in Lebanon: Strategic Issues and Challenges. International Education Journal, 7(3), pp 259-272.

Karelitz, T.M.; Parrish, D.M.; Yamada, H.; \& Wilson, M. (2010). Articulating Assessments across Childhood: The Cross-Age Validity of the Desired Results Developmental ProfileRevised. Educational Assessment, 15 (1), pp. 1-26

Kavale, A.K.; Spaulding, S. L. \& Beam, P. A. (2009).A Time to Define: Making the Specific Learning Disability Definition Prescribe SpecificLearning Disability.Learning Disability Quarterly, 32 (1), pp. 39-48.

Khalidi, W. 1979.Conflict and Violence in Lebanon: Confrontation in the Middle East. Cambridge: Harvard University.

King, M. L. Jr. (1948). Graduation Speech at Morehouse College.
Klenowski, V. (2009). Assessment for Learning revisited: an Asia-Pacific Perspective. Assessment in Education: Principles, Policy and Practice, 16 (3), pp. 263-268.

Kobeissy, H. (1999) State and Public Education in Lebanon.The State and Education in Lebanon. Lebanese Association for Educational Studies

Ladd, H. F. (2008). Teacher effects: What do we know? Teacher quality: broadening and deepening the debate, 3-26.

Latha V. (2008) Dyslexia or learning disability- 10- the concluding post. Retrieved on November 28, 2011 fromhttp://empoweringall.wordpress.com

Levin, K.A. (2006). Study Design III: Cross-Sectional Studies. Evidence-Based Dentistry, 7, 2425.

Mabry, L., Poole, J., Redmond, L., \& Schultz, A. (2003) Local impact of state testing in southwestWashington, Education Policy Analysis Archives, 11(22).
http://epaa.asu.edu/epaa/v11n22/

Matthews, J.M. \& Hudson, A.M. (2001).Guidelines for Evaluating Parent Training Projects. Family Relations, 50 (1), 77-86.

Mayes, S.D., \& Calhoun, S.L. (2005). Test of Definition of Learning Disability Based on the Difference Between IQ and Achievement. Psychological Reports, 97, 109-116.

Mazawi, A.E. (1999). The Contested Terrains of Education in the Arab States: An Appraisal of Major Research Trends. Comparative Education Review, 43 (3), pp 332-352.

McBride, S.; Dirani, L.A.; \& Mukalid, S.H. (1999). A Needs Assessment Study of the Lebanese Educational System in the Field of Special Education. UNESCO; Regional Office for Education in the Arabe States. Beirut Lebanon

MENA Report (February 6, 2008). The Road Not Traveled: Education Reforms in the Middle East and North Africa. The Daily Star, Beirut, Lebanon.

Mertler, C.A. (1998). Classroom Assessment Practices of Ohio Teachers. A paper presented at the 1998 annual meeting of the mid-western Educational Research Association in Chicago, Illinois.

Mhanna, K. (2001) The Institutions of Civil Society at the Service of the Disabled: The Lebanese Experience. Paper presented at the First International Conference: Disability, Rehabilitation and Inclusion; The Role of Governmental and International Organizations and Institutions of Civil Society. UNESCO Palace, Beirut, Lebanon.

Mji, G., MacLachlan, M., Melling-Williams, N., and Gcaza, S. (2009). Realising the Rights of Disabled People in Africa: An Introduction to the Special Issue.Disability and Rehabilitation, 31(1), pp1-6.

Mullis, I., Martin, M., Robitaille, D., \& Foy, P. (2008). TIMSS Advanced 2008 International Report: Findings from IES'A Trends in International Mathematics and Science Study at the Twelfth Grade. TIMSS \& PIRLS International Study Center, Lynch School of Education, Boston College: Boston

Myers, P.I., \&Hammil, D.D. (1990) Learning Disabilities: Basic Concepts, Assessment Practices, and Instructional Strategies, $4^{\text {th }}$ ed. Austin, TX: Pro-ed.

National Joint Committee on Learning Disabilities NJCLD (1990) Learning Disabilities: Issues on Definitions. Retrieved form http://www.ldonline.org/about/partners/njcld/archives

National Research Council.(2002). Scientific Research in Education. (R.J. Shavelson \& L. Towne, Eds.), Committee on Scientific Principles for Educational Research. Washington, DC: National Academy Press.

Natriello, G. (1987). The Impact of Evaluation Processes on Students.Educational Psychologist, 22, pp. 155-175.

Nicholson, T. (1989).Using the CIPP model to evaluate Reading Instruction. Journal of Reading, 32 (4), 312-318.

Nitko, A.J., (2004). Educational Assessment of Students, (4 ${ }^{\text {th }}$ ed). Upper Saddle River, NJ: Pearson Education Inc.

Nitko, A.J., \&Brookhart, S. (2010). Educational Assessment of Students ($6^{\text {th }}$ Ed.). Des Moines, IA: Prentice Hall.

Nolet, V., \&Macluaghlin, M. (2005).Accessing the General Curriculum: Including students with Disabilities in Standards-based Reform (2 ${ }^{\text {nd }}$ Ed.). Thousand Oaks, CA: Corwin Press.

Odom, S. L., Brantlinger, E., Gersten, R., Horner, R. H., Thompson, B., Harris, K. R. (2005). Research in Special Education: Scientific Methods and Evidence-Based Practices. Exceptional Children, 71(2), pp. 137-148.

Ofsted (2008). Assessment for Learning: The Impact of National Strategy Support.

Opertti, R. \&Belalcazar, C. (2008). Trends in Inclusive Education at Regional and Interregional Levles: Issues and Challenges. Humanities, Social Sciences and Law, 38(1), pp. 113-135.

Orwin, R. G. (1983). A Fail-Safe N for Effect in Meta-Analysis. Journal of Educational Statistics Summer, 8 (2), pp. 157-159

Parmar, R.S., Fratzita, R., \&Cawley, J.F. (1996). Mathematics Assessment for Students with Mild Disabilities: An Exploration of Content Validity. Learning Disabilities Quarterly, 19, 127-136.

Pat-El, R. J., Tillema, H., Segers, M., \&Vedder, P. (2013).Validation of Assessment for Learning Questionnaires for teachers and students.British Journal of Educational Psychology, 83(1), 98-113.

Peck, D.G. (1981). Adolescent Self-Esteem, Emotional Learning Disabilites, and Significant Others. Adolescence, 16, 443-451.

Pennington, B.F. (2008). Diagnosing Learning Disorders: A Neuropsychological Framework ($2^{\text {nd }}$ ed.). New York: Guilford.

Peters, S. (2008). Inequalities in Education for People with Disabilities. In Donald B. Holsinger and W. James Jacob (Eds.), Inequality in Education: Comparative and International Perspectives. Hong Kong: Springer/CERC.

Peters, S.J. (2009). Review of Marginalisation of People with Disabilities in Lebanon, Syria, and Jordan. Background paper prepared for the Education for All Global Monitoring Report 2010, Reaching the Marginalized, UNESCO.

Postareff, L., Virtanen, V., Katajavuori, N., \&Lindblom-Ylänne, S. (2012). Academics’ Conceptions of Assessment and Their Assessment Practices.Studies in Educational Evaluation. Retrieved from http://dx.doi.org/10.1016/j.stueduc.2012.06.003

Poteet, J. (1993). Performance Assessment and Special Education: Practices and Prospects. Focus on Exceptional Children, 26 (1), pp. 1-20

Reschly, D. J. (1988). Alternative Delivery Systems: Legal and Ethical Impact. In J.L. Graden, J.E. Zins, \& M. J. Curtis (Eds.), Alternative Educational Delivery Systems: Enhancing Instructional Opportunities for All Students (pp. 525-561). Washington, DC: National Association of School Psychologists.

RESHAPING, N. (1969). AERA SYMPOSIUM THE WORLD OF EVALUATION.

Reynolds, C.R., Livingston, R.B., \& Wilson, V., (2006). Measurement and Assessment in Education, Boston: Pearson Education Inc.

Riggan, M. \&Olah, L. N. (2011).Locating Interim Assessments within Teachers’ Assessment Practice.Educational Assessment, 16(1), pp. 1-14.

Rolheiser, C., \& Ross, J. (2000). Student self-evaluation-What do we know? Orbit, 30(4), pp.33-36.

Robinson, B. (2002). The CIPP Approach to Evaluation. COLLIT Project: A Background Note from Bernadette Robinson.

Roosevelt, E. (1930). Good Citizenship: The Purpose of Education. Pictorial Review, 4, pp. 9497

Rourke, B.P. (1991). Validation of Learning Disabilties Subtypes: An Overview. In B.P. Rourke (Ed.), Neuropsychological Validation on Learning Disabilities Subtypes(pp. 3-11). New York: Guilford.

Rourke, B.P. (2005). Neuropsychology of Learning Disabilities: Past and Future. Learning Disabilities Quarterly, 28, 111-114.

Rourke, B.P., \&Tsatsanus, K.D. (1996). Syndrome of Nonverbal Learning Disabilities: Psycholinguistic Assets and Deficits. Topic in Language Disorders, 16, 30-34.

Sakhuja S. (2004) Education for all and learning disabilities in India. 2004. Retreived on November 28, 2011 from http://sspeonline.org/article.

Salibi, K 1976. Crossroads to Civil War: Lebanon 1958-1976. New York: Caravan Books.

Salvia, J., Ysseldyke, J.E., \& Bolt, S. (2010). Assessment in Special and Inclusive Education ($11^{\text {th }}$ ed.). Belmont, CA: Wadsworth.

Schneider, C.G., \& Schoenberg, R. (1998).Contemporary Understandings of Liberal Education. Washington, DC: Association of American Colleges.

Scruggs, T.E.; Mastropieri, M.A.; Berkeley, S.; \&Graetz, J.E. (2010). Do Special Education Interventions Improve Learning of Secondary Content? A Meta-Analysis.Remedial and Special education, 31, 437-449.

Segers, M., Nijhuis, J., \&Gijselaers W. (2006). Redesigning a Learning and Assessment Environment: The Influence on Students' Perceptions of Assessment Demands and their Learning Strategies. Studies in Educational Evaluation, 32 (3), pp. 223-242.

Segers, M. \&Tillema, H. (2011). How Do Dutch Secondary Teachers and Students Conceive the Purpose of Assessment? Studies in Educational Evaluation, 37, 49-54.

Semaan, M. (2008, Ocotber 24).The Lebanese Physical Handicapped Union Dusts Law 220.Assafir (Beirut, Lebanon)

Shepard, L.A. (2000). The Role of Assessment in a learning Culture.Educational Researcher, 29(7), pp. 4-14

Shriner, J. G. (2000). Legal Perspectives on School Outcomes Assessment for Students with Disabilities.The Journal of Special Education, 33(4), pp. 232-239

Shulman, L. S. (1988). A Union of Insufficiencies: Strategies for Teacher Assessment in a Period of Educational Reform. Educational Leadership, 46 (3), 36-41.

Siegel, L.S., \& Ryan, E.B. (1989). Subtypes of Developmental Dyslexia: The Influence of Definitional Variables. Reading and Writing: An Interdisciplinary Journal, 1, 257-287.

Silver, L.B. (1998).A review of the Federal Government's Interagency Committee on Learning Disabilities Report on the U.S. Congress. Learning Disabilities Focus, 3, 73-80.

Skinner, C.H., Belfiore, P.J., \& Watson, S.T. (2002).Assessing the Relative Effects of Interventions in Students with Mild Disabilities: Assessing Instructional Time. Journal of Psychoeducational Assessment, 20, pp. 346-357.

Stanovich, K.E. (1986), Matthew Effects in Reading: Some Consequences of Individual Differences in the Acquisition of Literacy. Reading Research Quarterly, 21, 360-407.

Stiggins, R.J. (1999). Evaluating Classroom Assessment Training in Teacher Education programs.Educational Measurement: Issues and Practice, 18(1), pp.23-27.

Stiggins, R.J. (2001). The Unfulfilled Promise of Classroom Assessment.Educational Measurement: Issues and Practice, 20(3), pp. 5-15.

Stiggins, R.J. (2002). Assessment Crisis: The Absence of Assessment for Learning. Phi Delta Kappan, 83, pp.758-765.

Stiggins, R.J. (2005). Assessment FOR learning defined.

Stone, W.L., \& La Greca, A.M. (1990). The Social Status of Children with Learning Disabilites: A Reexamination. Journal of Learning Disabilities, 23, 32-37.

Struyven, K., Dochy, F., \&Janssens, S. (2005). Students' Perceptions about Evaluation and Assessment in Higher education: A Review. Assessment and Evaluation in Higher Education, 30, pp. 325-341.

Stufflebeam, D. L. (2002).New Directions for Evaluations. Med Edu, 2001 (89), pp. 7-98.

Stufflebeam, D.L. (2003). The CIPP Model for Evaluation. Kluwer International Handbooks of Education, 9, 31-62.

Stufflebeam, D. \&Shinkfield, A. (2007). Evaluation Theory, Models, and Applications. San Francisco, CA: Jossey-Bass.

Tan, S.; Lee, N.; \& Hall, D. (2010).CIPP as a Model for Evaluating Learning Spaces.EVALUATION OF LEARNING SPACES PROJECT.

Taylor, K., \& Nolen, S. (2005). Classroom assessment: Supporting teaching and learning in real classrooms. Upper Saddle River, NJ: Pearson Education, Inc.

The Office of Standards in Education, Children's Services and Skills (Ofsted) (2008). Assessment for Learning: The impact of National StrategySupport. Retrieved from www.ofsted.gov.uk

The Lebanese Constitution (May 22, 1926) with its amendments until 1995.

Tierney, R. D. (2006). Changing practices: Influences on classroom assessment. Assessment in Education, 13(3), 239-264.

Tillema, H., Leenknecht, M., \&Segers, M. (2011).Assessing Assessment Quality: Criteria for Quality Assurance in Design of Peer Assessment for Learning - A Review of Research Studies.Studies in Educational Evaluation, 37, pp. 25-34.

Tellez, K. (1996). Authentic Assessment.In J. Sikula (ed.), Handbook of Research on Teacher Education.(2nd Ed.) New York: Simon \& Schuster Macmillan.

Torrance, H. \& Pryor, J. (2001) Developing formative assessment in the classroom: using action research to explore and modify theory, British Educational Research Journal, 27(5),615-631.

UNDP (2009). Lebanon Achievements 2006-2009. Retrieved on November 24, 2011 fromhttp://www.undp.org.lb/communication/publications/downloads/achievements.pdf

UNDP (2009). Millennium Development Goals, Lebanon Report 2008.

UNDP (2011).Sustainable development in Lebanon: Status and Vision. National Report to the United Nations Conference on Sustainable Development. Rio De Janeiro, Brazil.

UNESCO (2008) The Arab world and the collective memory: an overview. 3rd International Memory of the World Conference. Canberra, Australia

Valas, H. (1999). Students with Learning Disabilities and Low-Achieving Students: Peer Acceptance, Loneliness, Self-Esteem, and Depression. Social Psychology of Education, 3, 173-192.

Vaughn, S., \& Fuchs, L. (2003).Redefining Learning Disabilities as an Inadequate Response to Instruction: The Promise and the Potential Problems.Learning Disabilities Research and Practice, 18, 137-146.

WawLphu (2007) Between Students, Schools, and Parents: Inclusive Experiences Within "Schools' Walls". WawLphu, (Beirut, Lebanon)

Webb, M. \& Jones, J. (2009).Exploring Tensions in Developing Assessment for Learning.Assessment in Education: Principles, Policy \& Practice, 16(2), pp. 165-184.

Wehbi, S. (2006).The Challenges of Inclusive Education in Lebanon.Disability and Society, 21(4), pp. 331-343.

Wehbi, S. and El-Lahib, Y. (2007). The Employment Situation of People with Disabilities in Lebanon: Challenges and Opportunities. Disability and Society, 22 (4), pp. 371-382.

Wiggins, G. (1989). A True Test: Toward More Authentic and Equitable Assessment." Phi Delta Kappan, 71, 703-713.

Wilson, S. M. (1995). Performance-Based Assessment of Teachers. In S. W. Soled (ed.), Assessment, Testing, and Evaluation in Teacher Education. Norwood, N.J.: Ablex.

Witte, S. P., \& Flach, J. (1994). Notes toward an Assessment of Advanced Ability to Communicate."Assessing Writing, 1 (2), 207-246.

Worley, T. M. (2001). Alternative assessment: methods to make learningmore meaningful. Presented at Pathways to Change: International Conference on Transforming Math and Science Education. http://k12s.phast.umass.edu/stemtec/pathways/Proceedings/Papers/?Worley-p.doc

Yeo, R. (2001) Chronic Poverty and Disability (background Paper No 4). Somerset: Action on Disability and Development.

Ysseldyke, J. (2005). Assessment and Decision Making for Students with Learning Disabilities: What if this is as Good as it Gets? Learning Disability Quarterly, 28 (2), pp. 125-128

Ysseldyke, J.E., \&Thurlow, M.L. (1984). Assessment Practices in Special Education: Adequacy and Appropriateness. Educational Psychologist, 9(3), pp 123-136.

Zhang, G.; Zeller, N.; Griffith, R.; Metcalf, D.; Williams, J.; Shea, C.; Misulis, K. (2011). Using the Context, Input, Process, and Product Evaluation Model (CIPP) as a Comprehensive Framework to Guide the Planning, Implementation, and Assessment of Service Learning Programs. Journal of Higher Education Outreach and Engagement, 15 (4), pp. 57-84.

ABSTRACT
 ASSESSMENT PRACTICES OF STUDENTS WITH LEARNING DISABILTIES IN LEBANESE PRIVATE SCHOOLS: A NATIONAL SURVEY

by

RASHA ELSAHELI ELHAGE

December 2014

Advisor: Dr. Shlomo Sawiloswky

Major: Educational Evaluation and Research

Degree: Doctor of Philosophy

Education is intended to provide diverse students with the skills and competencies needed to enhance their lives (Salvia, Ysseldyke \& Bolt, 2011). This includes assessment practices that enable teachers to identify students' current level of skills, their strength and weaknesses, target instruction at student's personal level, monitor student learning and progress and plan and conduct adjustments in instruction, and evaluate the extent to which students have met instructional goals. This study intended to discover, describe, and evaluate the assessment practices of teachers and administrators working with students with learning disabilities in Lebanese private schools via the Context, Input, Process and Product (CIPP) evaluation model developed by Stufflebeam (1971). Responses were compared and contrasted between administrators and teachers regarding the ethical component of assessment practices, as well as teacher and administrators' training and preparation for student assessment, their involvement in it, the impact they perceive student assessment practices were producing and their assessment practices of students with learning disabilities. The results revealed a Lebanese Context marked by a critical gender imbalance with a very high female dominance and a significant inaccuracy in ethical standards. Input evaluation revealed that almost half of the teachers and administrators
expressed being ill prepared in assessing student performance as a result of their teacher education program, and that administrators are significantly more involved in student assessment than teachers. Process evaluation revealed that even though special education teachers thought that alternative assessments were important, some of their assessment practices were still imprinted with traditional methods. Product evaluation revealed that teachers and administrators' perceived impact of student assessment was positive on the various aspects of the school. Recommendations emanating from the CIPP evaluation were given.

AUTOBIOGRAPHICAL STATEMENT

EDUCATION \& CREDENTIALS

\checkmark PhD (2014)
Major: Educational Evaluation and Research
Cognate: Educational Psychology
Wayne State University, Detroit, Michigan, USA
\checkmark Master of Education (2006)
Major: Special Education; Emotional Impairment
Eastern Michigan University, Ypsilanti, Michigan, USA
\checkmark Bachelor of Arts (1997)
Major: Special Education
Saint Joseph University, Achrafieh, Lebanon

CERTIFICATES

\checkmark Michigan Professional Teaching Certificate
Special Education Endorsement in Cognitive Impairment
\checkmark Delaware Professional Teaching Certificate
Special Education Endorsement

SUMMARY OF PROFESSIONAL EXPERIENCE

\checkmark Project Evaluation Specialist
American University of Beirut - Beirut, Lebanon (2011-Current)
\checkmark Trainer
National Center for Educational Research Development - Lebanon (2012-2013)
\checkmark Special Education Teacher
Edsel Ford High School - Dearborn, Michigan, US (2009-2011)
\checkmark Special Education Teacher
Woodworth Middle School - Dearborn, Michigan, USA (2004-2009)
\checkmark Special Education Teacher
The Leona Group
Cesar Chavez Academy - Detroit, Michigan, USA (2002-2004)
Allen Academy - Detroit, Michigan, USA (2001-2002)
\checkmark Long Term Substitute Teacher
Edsel Ford High School - Dearborn, Michigan, USA (2000)
\checkmark Special Education Teacher for Students with Hearing Impairment Al-Hadi Institute for Deaf and Blind Children - Beirut, Lebanon (1998-2000)
\checkmark Special Education Teacher for Students with Cognitive Impairment
Lebanese Association for the Handicapped Children - Beirut, Lebanon (1996-1998)

